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1. (10 points) Prove the Bounded Convergence Theorem:

If {fn} is a sequence of measurable functions bounded by M
and supported on a set E of finite measure with fn → f a.e.

Then lim
n→∞

∫
|fn − f | dx = 0
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2. (10 points) Prove Markov’s Theorem:

If f ∈ Lp
(
Rd
)

with 1 ≤ p <∞ then for every t > 0 we have

m {x | |f(x)| > t} ≤ 1

tp

(∫
|f |p dx

)
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3. (10 points) Consider the system{
x2 − y2 + 3z − u3 + v2 = −4

2xy + y2 − 4z − 2u2 + 3v4 = −8

Show that you can solve for u and v in terms of x, y, z around
the point (2,−1, 0, 2, 1) and calculate G′(2,−1, 0), where G is
the graph of u, v in terms of x, y, z
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4. (10 points) Let {Kn}∞n=1 be a family of functions called good
kernels with the following properties:

(1) 1
2π

∫ π
−πKn(x)dx = 1

(2) There is M > 0 such that for all n,
∫ π
−π |Kn(x)| dx ≤M

(3) For every δ > 0, limn→∞
∫
δ≤|x|≤π |Kn(x)| dx = 0

Let f be a 2π periodic function that is continuous at x, show

lim
n→∞

(f ? Kn) (x) = f(x)
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5. (10 points) Show that the (following version of the) Weierstraß
approximation theorem is false for R:

Weierstraß Approximation Theorem: If f : R → R is contin-
uous, then for all ε > 0 there is a polynomial p such that
|f(x)− p(x)| < ε for all x


