HOMEWORK 1 - AP SOLUTIONS

AP 1: Let P_{n} be the proposition $\int_{0}^{\infty} x^{n} e^{-x} d x=n$!
Base Case: $n=0$

$$
\begin{aligned}
\int_{0}^{\infty} x^{0} e^{-x} d x & =\int_{0}^{\infty} e^{-x} d x \\
& =\left[-e^{-x}\right]_{0}^{\infty} \\
& =-e^{-\infty}+e^{0} \\
& =1 \\
& =0!
\end{aligned}
$$

Inductive Step: Suppose P_{n} is true, that is $\int_{0}^{\infty} x^{n} e^{-x} d x=n!$.
Show P_{n+1} is true, that is $\int_{0}^{\infty} x^{n+1} e^{-x} d x=(n+1)$!

$$
\begin{aligned}
& \int_{0}^{\infty} x^{n+1} e^{-x} d x \\
\stackrel{I B P}{=} & {\left[-x^{n+1} e^{-x}\right]_{0}^{\infty}-\int_{0}^{\infty}(n+1) x^{n}\left(-e^{-x}\right) d x } \\
= & \left(\lim _{x \rightarrow \infty}-x^{n+1} e^{-x}\right)+0^{n+1} e^{-0}+(n+1) \int_{0}^{\infty} x^{n} e^{-x} d x \\
= & (n+1) n!\quad \text { By the hint with } k=n+1 \text { and the inductive hypothesis } \\
= & (n+1)!\checkmark
\end{aligned}
$$

[^0]Hence P_{n+1} is true, and therefore P_{n} is true for all n, that is $\int_{0}^{\infty} x^{n} e^{-x} d x=$ n !

AP 2: Let P_{n} be the proposition:

$$
\sin (x)+\sin (3 x)+\cdots+\sin ((2 n-1) x)=\frac{1-\cos (2 n x)}{2 \sin (x)}
$$

Base Case: $n=1$. Since $2(1)-1=1$, the left-hand-side just becomes $\sin (x)$, whereas the right-hand-side is:

$$
\begin{aligned}
\frac{1-\cos (2 x)}{2 \sin (x)} & =\frac{1-\cos ^{2}(x)+\sin ^{2}(x)}{2 \sin (x)} \\
& =\frac{\sin ^{2}(x)+\sin ^{2}(x)}{2 \sin (x)} \\
& =\frac{2 \sin ^{2}(x)}{2 \sin (x)} \\
& =\sin (x)
\end{aligned}
$$

Inductive Step: Suppose P_{n} is true, that is

$$
\sin (x)+\sin (3 x)+\cdots+\sin ((2 n-1) x)=\frac{1-\cos (2 n x)}{2 \sin (x)}
$$

Show P_{n+1} is true, that is:

$$
\sin (x)+\sin (3 x)+\cdots+\sin ((2(n+1)-1) x)=\frac{1-\cos (2(n+1) x)}{2 \sin (x)}
$$

$$
\begin{aligned}
& \sin (x)+\sin (3 x)+\cdots+\sin ((2(n+1)-1) x) \\
= & \sin (x)+\cdots+\sin ((2 n-1) x)+\sin ((2 n+1) x) \\
= & \frac{1-\cos (2 n x)}{2 \sin (x)}+\sin ((2 n+1) x) \quad(\text { By the inductive hypot } \\
= & \frac{1-\cos (2 n x)+\sin ((2 n+1) x) 2 \sin (x)}{2 \sin (x)} \\
= & \frac{1-\cos (2 n x)+\sin (2 n x+x) 2 \sin (x)}{2 \sin (x)} \\
= & \frac{1-\cos (2 n x)+2 \sin (x)(\sin (2 n x) \cos (x)+\cos (2 n x) \sin (x))}{2 \sin (x)} \\
= & \frac{1-\cos (2 n x)+\sin (2 n x) 2 \cos (x) \sin (x)+2 \cos (2 n x) \sin ^{2}(x)}{2 \sin (x)} \\
= & \frac{1-\cos (2 n x)\left(1-2 \sin ^{2}(x)\right)+\sin (2 n x) \sin (2 x)}{2 \sin (x)} \\
= & \frac{1-\cos (2 n x)\left(\cos ^{2}(x)+\sin ^{2}(x)-2 \sin ^{2}(x)\right)+\sin (2 n x) \sin (2 x)}{2 \sin (x)} \\
= & \frac{1-\cos (2 n x)\left(\cos ^{2}(x)-\sin ^{2}(x)\right)+\sin (2 n x) \sin (2 x)}{2 \sin ^{(x)}} \\
= & \frac{1-\cos (2 n x) \cos ^{2}(2 x)+\sin ^{2}(2 n x) \sin (2 x)}{2 \sin (x)} \\
= & \frac{1-\cos (2 n x+2 x)}{2 \sin (x)} \\
= & \frac{1-\cos ((2 n+1) x)}{2 \sin (x)}
\end{aligned}
$$

Therefore P_{n+1} is true, and hence P_{n} is true for all n, that is

$$
\sin (x)+\sin (3 x)+\cdots+\sin ((2 n-1) x)=\frac{1-\cos (2 n x)}{2 \sin (x)}
$$

AP 3: The statement is FALSE
Let $n=2$, then we'd have to prove or disprove whether

$$
|\cos (2 x)| \leq 2|\cos (x)|
$$

But now let $x=\frac{\pi}{2}$, then the left-hand-side becomes $|\cos (\pi)|=|-1|=1$ whereas the right-hand-side is $2\left|\cos \left(\frac{\pi}{2}\right)\right|=0$.

In fact, if you graph both functions, you can see that one is not above the other one (courtesy wolframalpha):

Note: If you try to imitate the proof in the book, you would eventually get $|\cos ((n+1) x)| \leq|\cos (n x)||\cos (x)|+|\sin (n x)||\sin (x)|$, but
all you can deduce from that is $|\cos ((n+1) x)| \leq|\cos (n x)|+|\sin (x)|$, which doesn't combine as nicely as the proof with sin.

AP 4

$$
\begin{aligned}
& 0=\emptyset \\
& 1=0 \cup\{0\}=\emptyset \cup\{\emptyset\}=\{\emptyset\} \\
& 2=1 \cup\{1\}=\{\emptyset\} \cup\{\{\emptyset\}\}=\{\emptyset,\{\emptyset\}\} \\
& 3=\{\emptyset,\{\emptyset\}\} \cup\{\{\emptyset,\{\emptyset\}\}\}=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}
\end{aligned}
$$

[^0]: Date: Friday, September 3, 2021.

