HOMEWORK 1 - SELECTED BOOK SOLUTIONS

1.9(b): Let P_{n} be the proposition $2^{n}>n^{2}$

Base Case: $n=5$

$$
2^{5}=32>25=5^{2} \checkmark
$$

Inductive Step: Suppose P_{n} is true, that is $2^{n}>n^{2}$

Show P_{n+1} is true, that is $2^{n+1}>(n+1)^{2}$, but:

$$
2^{n+1}=2\left(2^{n}\right)>2 n^{2}
$$

(where in the last step we used the inductive hypothesis)
Now $2 n^{2}>(n+1)^{2}$ is equivalent to $2 n^{2}>n^{2}+2 n+1$, which is equivalent to $n^{2}-2 n-1>0$

However:
$n^{2}-2 n-1=n^{2}-2 n+1-2=(n+1)^{2}-2 \geq(5+1)^{2}-2=34>0$ where we used the fact that $n \geq 5$

Therefore $2^{n+1}>(n+1)^{2}$ so P_{n+1} is true, and therefore P_{n} is true for all $n \geq 5$, that is

$$
2^{n}>n^{2}
$$

Date: Friday, September 3, 2021.

