Peiyon Li, uni: p12801.

MATH 4062 – HOMEWORK 1

Note: The problems refer to the Rudin textbook. See below for hints

• Chapter 7: 2, 7

[I proved it

Note: For 2 you're allowed to use problem 1 (without proof)

Please **also** do the additional problems below.

Additional Problem 1: Consider the following sequence of functions f_n on [0, 1], sometimes called the growing steeple

$$f_n(x) = \begin{cases} nx & \text{if } 0 \le x \le \frac{1}{n} \\ 2 - nx & \text{if } \frac{1}{n} \le x \le \frac{2}{n} \\ 0 & \text{if } \frac{2}{n} \le x \le 1 \end{cases}$$

Show that f_n converges pointwise to 0, but not uniformly to 0.

Additional Problem 2: Suppose $f_n : \mathbb{R} \to \mathbb{R}$ is a sequence of uniformly continuous functions and $f_n \to f$ uniformly as $n \to \infty$. Show that f is uniformly continuous.

Date: Due: Friday, July 8, 2022.

- 1. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 2. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, prove that $\{f_n + g_n\}$ converges uniformly on E. If, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, prove that $\{f_ng_n\}$ converges uniformly on E.

2. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set *E*, prove that $\{f_n + g_n\}$ converges uniformly on *E*. If, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, prove that $\{f_ng_n\}$ converges uniformly on *E*.

let for uniformly coverage to f and go uniformly coverage to g \mathbf{O} then VE>D INFEN ST. |frix)-fix) < =, N7Ny, VXEE ∃Ng EN sit |gn(x)-g(x)|< €, N≥Ng, H XEE $\exists N = \max \{N_f, N_g\} \in \mathbb{N}$ St. (+114) + gn(v) - (+14) 5 [fnx) - fix) + 1gnx -gix) 58 NZN, HEEE which means fint gn converges uniformly on 1= (to ftg) O by 1, we know that offin 3 & (gn 3 are uniformly bounded From the proof of 1, we also know that f and g are bounded as well take M >0 st. If I< M, 181<M and Itn M, 19n KM forall n VETO JNG N S.T. (tnk) - fiv) = for all x and N-N, IN2EN Sit. Ignix) - fix) | ≈ € for all 20 and n > N2 $\exists N = max(N_1, N_2)$ St. $[f_ng_n(x) - f_g(x)] = [f_n(x)g_n(x) - f_n(x)g(x) + f_n(x)g(x) - f(x)g(x)]$ \approx $f_{n(x)}$ $|g_{n(x)} - g_{n(x)}| + |g_{n(x)}| + f_{n(x)} - f_{n(x)}|$ SE for all n>N and all x Which means for converges uniformly on E. (to fg)

7. For n = 1, 2, 3, ..., x real, put

$$f_n(x)=\frac{x}{1+nx^2}.$$

Show that $\{f_n\}$ converges uniformly to a function f, and that the equation

$$f'(x) = \lim_{n \to \infty} f'_n(x)$$

is correct if
$$x \neq 0$$
, but false if $x = 0$.
0 Find x , $f_{nix} = f_{nix} = 0$, so find converges pointwise to $f \equiv 0$
(a) In this part, we prove (f_n) converges uniformly (yellow highlight part)
 $\forall e \neq 0 \quad \exists N > 4c^2 \quad st. \quad \forall n \geq N, \quad \exists n \leq \exists n \leq 2 \exists n \leq 2 \exists r = e$
Thus, we have
 $|f_n(x) - 0| = |\frac{x}{|1 + n \cdot \chi^2|} = |\frac{1}{|\frac{1}{x} + nx|} \leq 2 \exists n \leq e$
 $\forall n \geq N, \quad \forall x \in \mathbb{R}$
(note) $|\frac{1}{x} + nx| = \frac{1}{|x|} + n|x|$
 $= \frac{1}{(1 \mid x|)^2} + (\sqrt{n(x)})^2 \geq 2 \sqrt{n}$
Note $n^2 + b^2 \geq 2ab$
 $\pm hus$ $|\frac{1}{x + nx|} \leq \frac{1}{2\sqrt{n}}$
(3) i) $f(x) \equiv 0, \quad f(x) \equiv 0$
 $2^{i} \int_{n}^{1} |x| = \frac{(i - nx^2) - 2nx^2}{(i - nx^2)^2} = \frac{(-3nx^2)}{(i - nx^2)^2}$
when $x \equiv 0, \quad f_{ni} \geq 0$
 $x \pm 0, \quad f_{ni} \geq 1$
 $x \pm 0, \quad f_{ni} \geq$

Additional Problem 1: Consider the following sequence of functions f_n on [0, 1], sometimes called the growing steeple

$$f_n(x) = \begin{cases} nx & \text{if } 0 \le x \le \frac{1}{n} \\ 2 - nx & \text{if } \frac{1}{n} \le x \le \frac{2}{n} \\ 0 & \text{if } \frac{2}{n} \le x \le 1 \end{cases}$$

Show that f_n converges pointwise to 0, but not uniformly to 0.

0 Converges Pointuise:

$$\forall \text{ fixed } x$$
, $\forall e \neq 0$ by Archimedean Properity, $\exists n \in \mathbb{N} \text{ st}$; $\frac{2}{n} < k$
So by this n , $\frac{2}{n} \leq k \leq 1$, $fn(x) = 0$, then,
 $|f_n(x) - 0| = |0 - 0| = 0 < \epsilon$
which means it converges pointuise to 0 (by highlight part)
 e not uniformly
 $\exists e = \frac{1}{2}$, for $\forall N > 0 \ N \in \mathbb{N}$,
 $\exists x = \frac{1}{N} \quad \text{s.t.}$
 $f_N(\frac{1}{N}) = 1$ where $f_N(x) - 0 = 1 > \epsilon = \frac{1}{2}$
which means it is not uniformly converges (by highlight part)

Additional Problem 2: Suppose $f_n : \mathbb{R} \to \mathbb{R}$ is a sequence of uniformly continuous functions and $f_n \to f$ uniformly as $n \to \infty$. Show that f is uniformly continuous.

that f is uniformly continuous.

$$\forall \varepsilon > 0 \equiv n \in \mathbb{N}$$
 s.t. $|f_n(x) - f_i(x)| < \frac{c}{3}$ for all ∞
(Because $f_n \rightarrow f$ uniformly as $n \rightarrow \infty$)
For some n and ε
 $\equiv 8 > 0$ s.t. $|f_n(x) - f_i(y)| < \frac{c}{3}$ for any $|k - y| < 8$
(Because fixed n, f_n is uniformly continuous)
Then:
 $|f_{i,v} - f_{i,v}| = |f_{i,v} - f_n \infty| + |f_{n(v)} - f_{n(v)}| + |f_{n(v)} - f_{v,v}|$
 $\leq \frac{c}{3} + \frac{c}{3} + \frac{c}{3} = \varepsilon$ when $|x - y| < \delta$
By the yellow high light part, we could conclude that
f is uniformly continuous.