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MATH 4062 — HOMEWORK 1

Note: The problems refer to the Rudin textbook. See below for hints
e Chapter 7: 2, 7 ([-L 1t
Note: For 2 you're allowed to use problem 1 (without proof)

Please also do the additional problems below.

Additional Problem 1: Consider the following sequence of functions
fn on [0, 1], sometimes called the growing steeple
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fal®)=<2—nz fi<az<?2
0 if2<2<1

Show that f,, converges pointwise to 0, but not uniformly to 0.
Additional Problem 2: Suppose f, : R — R is a sequence of uni-

formly continuous functions and f, — f uniformly as n — oco. Show
that f is uniformly continuous.
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1. Prove that every uniformly convergent sequence of bounded functions is uni-

formly bounded.
2. If {f,} and {g.} converge uniformly on a set E, prove that {f, + g.} converges

uniformly on E. If, in addition, {f,} and {g.} are sequences of bounded functions,
prove that {f,g.} converges uniformly on E.
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2. It: {fs} and {g.} converge uniformly on a set E, prove that {f, + g.} converges
uniformly on E. If, in addition, {f,} and {g.} are sequences of bounded functions,
prove that {f,g.} converges uniformly on E.
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7. Forn=1,2,3,..., x real, put

Sulx) = 1+nx=

Show that {f£,} converges uniformly to a function f, and that the equation
f'(x)= li_?lfé(x)
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Additional Problem 1: Consider the following sequence of functions
fn on [0, 1], sometimes called the growing steeple
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Show that f,, converges pointwise to 0, but not uniformly to 0.
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Additional Problem 2: Suppose f, : R — R is a sequence of uni-
formly continuous functions and f, — f uniformly as n — oco. Show
that f is uniformly continuous.
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