MATH S4062 - HOMEWORK 1

Note: The problems refer to the Rudin textbook. See below for hints - Chapter 7: 2, 7

Note: For 2 you're allowed to use problem 1 (without proof)
Please also do the additional problems below.
Additional Problem 1: Consider the following sequence of functions f_{n} on $[0,1]$, sometimes called the growing steeple

$$
f_{n}(x)= \begin{cases}n x & \text { if } 0 \leq x \leq \frac{1}{n} \\ 2-n x & \text { if } \frac{1}{n} \leq x \leq \frac{2}{n} \\ 0 & \text { if } \frac{2}{n} \leq x \leq 1\end{cases}
$$

Show that f_{n} converges pointwise to 0 , but not uniformly to 0 .
Additional Problem 2: Suppose $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ is a sequence of uniformly continuous functions and $f_{n} \rightarrow f$ uniformly as $n \rightarrow \infty$. Show that f is uniformly continuous.

Hints:

Problem 2: this is similar to the proof that $f+g$ and $f g$ are continuous.

Problem 7: First show that $\left|f_{n}(x)\right| \leq \frac{1}{2 \sqrt{n}}$. In order to do this, use that $a^{2}+b^{2} \geq 2 a b$ (which follows because $(a-b)^{2} \geq 0$)

Additional Problem 1: Write down the negation of the definition of uniform convergence. I think $\epsilon=\frac{1}{2}$ should work

Additional Problem 2: This is similar to the proof with continuity.

