HOMEWORK 10 - AP SOLUTIONS

AP 1

(a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x) \cos (h)+\cos (x) \sin (h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \sin (x)\left(\frac{\cos (h)-1}{h}\right)+\cos (x)\left(\frac{\sin (h)}{h}\right) \\
& =\sin (x) \times 0+\cos (x) \times 1 \\
& =\cos (x)
\end{aligned}
$$

(b)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos (x) \cos (h)-\sin (x) \sin (h)-\cos (x)}{h} \\
& =\lim _{h \rightarrow 0} \cos (x)\left(\frac{\cos (h)-1}{h}\right)-\sin (x)\left(\frac{\sin (h)}{h}\right) \\
& =\cos (x) \times 0-\sin (x) \times 1 \\
& =-\sin (x)
\end{aligned}
$$

Date: Friday, November 19, 2021.
(c)

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{\sin (x)}{\cos (x)}\right)^{\prime} \\
& =\frac{\cos (x) \cos (x)-\sin (x)(-\sin (x))}{\cos ^{2}(x)} \\
& =\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)} \\
& =\frac{1}{\cos ^{2}(x)} \\
& =\sec ^{2}(x)
\end{aligned}
$$

(d)
$\left(\tan ^{-1}(y)\right)^{\prime}=\frac{1}{(\tan)^{\prime}(x)}=\frac{1}{\sec ^{2}(x)}=\frac{1}{1+\tan ^{2}(x)}=\frac{1}{1+\tan ^{2}\left(\tan ^{-1}(y)\right)}=\frac{1}{1+y^{2}}$

Hence $\left(\tan ^{-1}(x)\right)^{\prime}=\frac{1}{1+x^{2}}$

AP 2
Differentiating both sides of the equation, we get:

$$
\begin{aligned}
\left(\ln \left(\frac{f(x)}{g(x)}\right)\right)^{\prime} & =(\ln (f(x)))^{\prime}-(\ln (g(x)))^{\prime} \\
\frac{\left(\frac{f(x)}{g(x)}\right)^{\prime}}{\left(\frac{f(x)}{g(x)}\right)} & =\frac{f^{\prime}(x)}{f(x)}-\frac{g^{\prime}(x)}{g(x)} \\
\left(\frac{f(x)}{g(x)}\right)^{\prime} & =\left(\frac{f(x)}{g(x)}\right)\left(\frac{f^{\prime}(x)}{f(x)}-\frac{g^{\prime}(x)}{g(x)}\right) \\
& =\left(\frac{f(x)}{g(x)}\right)\left(\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{f(x) g(x)}\right) \\
& =\frac{f^{\prime}(x) g(x) f(x)-g^{\prime}(x) f(x) f(x)}{f(x) g(x) g(x)} \\
& =\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{(g(x))^{2}}
\end{aligned}
$$

AP 3

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{e^{-\frac{1}{x}}}{x}
$$

However, we have

$$
\frac{1}{x}=x\left(\frac{1}{x}\right)^{2}=2 x \frac{1}{2}\left(\frac{1}{x}\right)^{2} \leq 2 x \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{x}\right)^{n}=2 x e^{\frac{1}{x}}
$$

The middle step follows because $\frac{1}{2!}\left(\frac{1}{x}\right)^{2}$ is one term of the series, and the last step follows from the definition of e^{x} as a series (from a previous homework). Therefore we have:

$$
0 \leq \frac{1}{x} \leq 2 x e^{\frac{1}{x}} \Rightarrow 0 \leq \frac{e^{-\frac{1}{x}}}{x} \leq 2 x
$$

And by the squeeze theorem we get $\lim _{x \rightarrow 0^{+}} \frac{e^{-\frac{1}{x}}}{x}=0$
Therefore $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=0$ and the limit as $x \rightarrow 0^{-}$simply follows because $f(x)=0$ for negative x. Hence $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0$.

For part (b), since $f^{(n)}(0)=0$ for all n, the Maclaurin series of f becomes $\sum_{n=0}^{\infty} \frac{0}{n!} x^{n}=0$, so it's the zero function, which is not a good approximation to f at all!

AP 4

(a) Let $g(x)=\frac{f(x+a)}{f(x)}$, then

$$
g^{\prime}(x)=\frac{f^{\prime}(x+a) f(x)-f(x+a) f^{\prime}(x)}{(f(x))^{2}}=\frac{f(x+a) f(x)-f(x+a) f(x)}{(f(x))^{2}}=0
$$

So $g^{\prime}(x)=0$, so $g(x)=C$, but notice that:

$$
C=g(0)=\frac{f(a)}{f(0)}=f(a)
$$

Hence $C=f(a)$, and we get that $g(x)=f(a)$, so

$$
\frac{f(x+a)}{f(x)}=f(a)
$$

And multiplying by $f(x)$, we get:

$$
f(x+a)=f(x) f(a)
$$

(b) Let $g(x)=f(-x) f(x)$, then

$$
g^{\prime}(x)=-f^{\prime}(-x) f(x)+f(-x) f^{\prime}(x)=-f(-x) f(x)+f(-x) f(x)=0
$$

Hence $g(x)=C$.

$$
\text { But } C=g(0)=f(0) f(0)=1 \times 1=1
$$

So $g(x)=1$, and $f(-x) f(x)=1$, and:

$$
f(-x)=\frac{1}{f(x)}
$$

(c) Let $g(x)=\frac{f(a x)}{f(x)^{a}}$, then:

$$
\begin{aligned}
g^{\prime}(x) & =\frac{f^{\prime}(a x) a(f(x))^{a}-f(a x) a f(x)^{a-1} f^{\prime}(x)}{f(x)^{2 a}} \\
& =\frac{a f(a x) f(x)^{a}-a f(a x) f(x)^{a-1} f(x)}{f(x)^{2 a}} \\
& =\frac{a f(a x) f(x)^{a}-a f(a x) f(x)^{a}}{f(x)^{2 a}} \\
& =0
\end{aligned}
$$

So $g(x)=C$, but:

$$
C=g(0)=\frac{f(0)}{f(0)^{a}}=\frac{1}{1}=1
$$

So $g(x)=1$, so $\frac{f(a x)}{f(x)^{a}}=1$, so:

$$
f(a x)=f(x)^{a}
$$

$$
\begin{gathered}
\text { AP } 5 \\
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x} & \hat{H} \\
=\lim _{x \rightarrow \infty} & \frac{\left(\frac{1}{2 \sqrt{x^{2}+1}}\right) 2 x}{1} \\
& =\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}} \\
& \stackrel{\hat{H}}{=} \lim _{x \rightarrow \infty} \frac{1}{\left(\frac{1}{2 \sqrt{x^{2}+1}}\right) 2 x} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x}
\end{aligned}
\end{gathered}
$$

Oh no, we end up getting back to where we started from!

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x} & =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}\left(1+\frac{1}{x^{2}}\right)}}{x} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}} \sqrt{1+\frac{1}{x^{2}}}}{x} \sqrt{x^{2}}=|x|=x \text { Since } x>0 \\
& =\lim _{x \rightarrow \infty} \frac{x \sqrt{1+\frac{1}{x^{2}}}}{x} \\
& =\lim _{x \rightarrow \infty} \sqrt{1+\frac{1}{x^{2}}} \\
& =\sqrt{1+0} \\
& =1
\end{aligned}
$$

