HOMEWORK 10 - SELECTED BOOK SOLUTIONS

28.6

Let $\epsilon>0$ be given, let $\delta=\epsilon$, then if $|x|<\delta=\epsilon$, then

$$
\left|x \sin \left(\frac{1}{x}\right)-0\right|=\left|x \sin \left(\frac{1}{x}\right)\right| \leq|x|<\epsilon \checkmark
$$

Therefore f is continuous at $x=0$. However:

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x \sin \left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right) \quad \text { DNE }
$$

Hence f is not differentiable at $x=0$.

$$
28.15
$$

First let's show the result in the hint:

[^0]\[

$$
\begin{aligned}
\binom{n}{k-1}+\binom{n}{k} & =\frac{n!}{(k-1)!(n-k+1)!}+\frac{n!}{k!(n-k)!} \\
& =\frac{n!}{(k-1)!(n-k)!}\left(\frac{1}{n-k+1}+\frac{1}{k}\right) \\
& =\frac{n!}{(k-1)!(n-k)!}\left(\frac{k+(n-k+1)}{k(n-k+1)}\right) \\
& =\frac{n!}{(k-1)!(n-k)!}\left(\frac{n+1}{k(n-k+1)}\right) \\
& =\frac{n!(n+1)}{(k-1)!k(n-k)!(n+1-k)!} \\
& =\frac{(n+1)!}{k!(n+1-k)!} \\
& =\binom{n+1}{k}
\end{aligned}
$$
\]

Now let P_{n} be the proposition

$$
(f g)^{(n)}(a)=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(a) g^{(n-k)}(a)
$$

Base case: $n=0$, then the left hand side is just $f g(a)$ and the right-hand-side is

$$
\sum_{k=0}^{0}\binom{n}{k} f^{(k)}(a) g^{(0-k)}(a)=\binom{0}{0} f^{(0)}(a) g^{(0-0)}(a)=f(a) g(a) \checkmark
$$

Now suppose P_{n} is true and show P_{n+1} is true, but:

$$
\begin{aligned}
(f g)^{(n+1)}(a) & =\left((f g)^{(n)}\right)^{\prime}(a) \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(f^{(k)}(a) g^{(n-k)}(a)\right)^{\prime} \\
& =\sum_{k=0}^{n}\binom{n}{k} f^{(k+1)}(a) g^{(n-k)}(a)+\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(a) g^{(n-k+1)}(a) \quad \text { (Prod. Rule) } \\
& =\sum_{k=1}^{n+1}\binom{n}{k-1} f^{(k)}(a) g^{(n-(k-1))}(a)+\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(a) g^{(n-k+1)}(a) \\
& =\sum_{k=1}^{n}\binom{n}{k-1} f^{(k)}(a) g^{n-(k-1)}(a)+\binom{n}{n} f^{(n+1)}(a) g(a) \\
& +\binom{n}{0} f^{(0)}(a) g^{(n+1)}(a)+\sum_{k=1}^{n}\binom{n}{k} f^{(k)}(a) g^{(n-k+1)}(a) \\
& =f(a) g^{(n+1)}(a)+\sum_{k=1}^{n}\left(\binom{n}{k-1}+\binom{n}{k}\right) f^{(k)}(a) g^{n+1-k}(a)+f^{(n+1)}(a) g(a) \\
& =\binom{n+1}{0} f(a) g^{(n+1)}(a)+\sum_{k=1}^{n}\binom{n+1}{k} f^{(k)}(a) g^{n+1-k}(a) \\
& +\binom{n+1}{n+1} f^{(n+1)}(a) g(a) \\
& =\sum_{k=0}^{n+1}\binom{n+1}{k} f^{(k)}(a) g^{(n+1-k)}(a) \checkmark
\end{aligned}
$$

Hence P_{n+1} is true and so P_{n} is true for all n

$$
29.4
$$

Let $h(x)=f(x) e^{g(x)}$, then

$$
\left.h(a)=f(a) e^{g(a)}=0, \quad h(b)=f(b) e^{(} g(b)\right)=0
$$

Since $h(a)=h(b)$, by Rolle's Theorem, there is some c in (a, b) such that $h^{\prime}(c)=0$. However:

$$
\left.\left.\begin{array}{rl}
h^{\prime}(x)=\left(f(x) e^{g(x)}\right.
\end{array}\right)^{\prime}=f^{\prime}(x) e^{g(x)}+f(x) e^{g(x)} g^{\prime}(x)=e^{g(x)}\left(f^{\prime}(x)+f(x) g^{\prime}(x)\right)\right) ~ \begin{aligned}
& h^{\prime}(c)=0 \\
& e^{g(c)}\left(f^{\prime}(c)+f(c) g^{\prime}(c)\right)=0 \\
& f^{\prime}(c)+f(c) g^{\prime}(c)=0 \quad\left(\text { Since } e^{g(c)}>0\right)
\end{aligned}
$$

Which is what we wanted

$$
29.5
$$

Given x and h, use the above assumption with $x+h$ instead of y to conclude that

$$
|f(x)-f(x+h)| \leq(x-(x+h))^{2}=h^{2}
$$

Dividing by h, this implies that

$$
\left|\frac{f(x+h)-f(x)}{h}\right| \leq h
$$

Since $\lim _{h \rightarrow 0} h=0$, by the squeeze theorem, this implies that

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=0
$$

Hence $f^{\prime}(x)=0$ for all x and so f is constant

STEP 1: Let's first show by induction on n that

$$
\left|s_{n+1}-s_{n}\right| \leq a^{n}\left|s_{1}-s_{0}\right|
$$

The base case $n=0$ gives $\left|s_{1}-s_{0}\right| \leq a^{0}\left|s_{1}-s_{0}\right| \checkmark$.
For the inductive step, assume $\left|s_{n+1}-s_{n}\right| \leq a^{n}\left|s_{1}-s_{0}\right|$, then:

$$
\begin{aligned}
\left|s_{n+2}-s_{n}\right| & =\left|f\left(s_{n+1}\right)-f\left(s_{n}\right)\right| \\
& =\left|\frac{f\left(s_{n+1}\right)-f\left(s_{n}\right)}{s_{n+1}-s_{n}}\right|\left|s_{n+1}-s_{n}\right| \\
& =\left|f^{\prime}(c)\right|\left|s_{n+1}-s_{n}\right| \quad \quad \text { (Mean Value Theorem) } \\
& \leq a\left|s_{n+1}-s_{n}\right| \quad \text { (Definition of } a \text {) } \\
& \leq a a^{n}\left|s_{1}-s_{0}\right| \quad \text { (Inductive Hypothesis) } \\
& =a^{n+1}\left|s_{1}-s_{0}\right| \checkmark
\end{aligned}
$$

STEP 2: Then WLOG, if $n>m$, it follows that

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & =\left|s_{n}-s_{n-1}+s_{n_{1}}-s_{n-2}+\cdots+s_{m+1}-s_{m}\right| \\
& \leq\left|s_{n}-s_{n-1}\right|+\left|s_{n-1}-s_{n-2}\right|+\cdots+\left|s_{m+1}-s_{m}\right| \\
& \leq a^{n-1}\left|s_{1}-s_{0}\right|+a^{n-2}\left|s_{1}-s_{0}\right|+\cdots+a^{m}\left|s_{1}-s_{0}\right| \\
& =\left(a^{n-1}+a^{n-2}+\cdots+a^{m}\right)\left|s_{1}-s_{0}\right| \\
& =a^{m}\left(a^{n-m-1}+a^{n-m-2}+\cdots+1\right)\left|s_{1}-s_{0}\right| \\
& \leq a^{m}\left|1+a^{2}+a^{3}+\cdots\right|\left|s_{1}-s_{0}\right| \quad(a>0) \\
& =a^{m} \frac{1}{1-a}\left|s_{1}-s_{0}\right| \quad \quad \text { (Geometric Series) } \\
& =a^{m} \frac{\left|s_{1}-s_{0}\right|}{1-a}
\end{aligned}
$$

STEP 3: Now if $\epsilon>0$ is given since $\lim _{m \rightarrow a^{m}}=0$ (since $a<1$) there is N such that if $m>N$, then

$$
a^{m}<\epsilon\left(\frac{1-a}{\left|s_{1}-s_{0}\right|}\right)
$$

(Note $s_{1} \neq s_{0}$, unless $f\left(s_{0}\right)=s_{0}$, in which case we have a fixed point) With that N, if $m, n>N$, then WLOG $n>m$, and then

$$
\left|s_{n}-s_{m}\right| \leq a^{m} \frac{\left|s_{1}-s_{0}\right|}{1-a}<\epsilon\left(\frac{1-a}{\left|s_{1}-s_{0}\right|}\right) \frac{\left|s_{1}-s_{0}\right|}{1-a}=\epsilon
$$

Therefore $\left(s_{n}\right)$ is Cauchy and since \mathbb{R} is complete, $\left(s_{n}\right)$ converges to some s
29.18(в)

By definition of s_{n} we have $s_{n}=f\left(s_{n-1}\right)$
Now $s_{n} \rightarrow s$ and hence $s_{n-1} \rightarrow s$, but since f is continuous, this implies $f\left(s_{n-1}\right) \rightarrow f(s)$

So taking the limit as $n \rightarrow \infty$ in the equation $s_{n}=f\left(s_{n-1}\right)$ we ultimately get $s=f(s)$, and therefore f has a fixed point
30.6

Applying the hint and L'Hôpital's rule (since $e^{x} \rightarrow \infty$), we get

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{f(x) e^{x}}{e^{x}} \\
& \stackrel{\hat{H}}{=} \lim _{x \rightarrow \infty} \frac{\left(f(x) e^{x}\right)^{\prime}}{\left(e^{x}\right)^{\prime}} \\
& =\lim _{x \rightarrow \infty} \frac{f^{\prime}(x) e^{x}+f(x) e^{x}}{e^{x}} \\
& =\lim _{x \rightarrow \infty} f^{\prime}(x)+f(x) \\
& =L
\end{aligned}
$$

Therefore $f(x) \rightarrow L$, and then
$\lim _{x \rightarrow \infty} f^{\prime}(x)=\lim _{x \rightarrow \infty}\left(f^{\prime}(x)+f(x)\right)-f(x)=\lim _{x \rightarrow \infty} f^{\prime}(x)+f(x)-\lim _{x \rightarrow \infty} f(x)=L-L=0 \checkmark$ 30.7(A)

$$
f(x)=x+\cos (x) \sin (x) \geq x-1
$$

Since $\lim _{x \rightarrow \infty} x-1=\infty$, by comparison of limits, $\lim _{x \rightarrow \infty} f(x)=\infty$

$$
g(x)=e^{\sin (x)}(x+\cos (x) \sin (x)) \geq e^{-1}(x-1)
$$

Since $\lim _{x \rightarrow \infty} e^{-1}(x-1)=\infty$, by comp. of limits, $\lim _{x \rightarrow \infty} g(x)=\infty$

$$
30.7(\mathrm{~B})
$$

$$
\begin{aligned}
f^{\prime}(x) & =1-\sin (x) \sin (x)+\cos (x) \cos (x) \\
& \left.=1-\sin ^{2}(x)+\cos ^{(} x\right) \\
& =\cos ^{2}(x)+\cos ^{2}(x) \\
& =2 \cos ^{2}(x)
\end{aligned}
$$

$$
\begin{aligned}
g^{\prime}(x) & =e^{\sin (x)} \cos (x)(x+\cos (x) \sin (x))+e^{\sin (x)}(x+\cos (x) \sin (x))^{\prime} \\
& =e^{\sin (x)} \cos (x)(x+\cos (x) \sin (x))+e^{\sin (x)}\left(2 \cos ^{2}(x)\right) \\
& =e^{\sin (x)} \cos (x)(x+\cos (x) \sin (x)+2 \cos (x)) \\
& =e^{\sin (x)} \cos (x)(2 \cos (x)+f(x))
\end{aligned}
$$

$$
30.7(\mathrm{c})
$$

$$
\begin{aligned}
\frac{f^{\prime}(x)}{g^{\prime}(x)} & =\frac{2 \cos ^{2}(x)}{e^{\sin (x)} \cos (x)(2 \cos (x)+f(x))} \\
& =\frac{2 \cos (x)}{e^{\sin (x)}(2 \cos (x)+f(x))} \\
& =\frac{2 e^{-\sin (x)} \cos (x)}{2 \cos (x)+f(x)}
\end{aligned}
$$

$$
30.7(\mathrm{D})
$$

The first part follows from the squeeze theorem, since the numerator is bounded by $2 e$ whereas the denominator $2 \cos (x)+f(x) \rightarrow \infty$ (by comparison of limits). As for the second limit:

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f(x)}{e^{\sin (x)} f(x)}=\lim _{x \rightarrow \infty} \frac{1}{e^{\sin (x)}} \quad \text { Does not Exist }
$$

[^0]: Date: Friday, November 19, 2021.

