
HOMEWORK 10 − SELECTED BOOK SOLUTIONS

28.6

Let ϵ > 0 be given, let δ = ϵ, then if |x| < δ = ϵ, then

∣∣∣∣x sin(1

x

)
− 0

∣∣∣∣ = ∣∣∣∣x sin(1

x

)∣∣∣∣ ≤ |x| < ϵ✓

Therefore f is continuous at x = 0. However:

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x sin
(
1
x

)
x

= lim
x→0

sin

(
1

x

)
DNE

Hence f is not differentiable at x = 0.

28.15

First let’s show the result in the hint:
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(
n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!(n− k + 1)!
+

n!

k!(n− k)!

=
n!

(k − 1)!(n− k)!

(
1

n− k + 1
+

1

k

)
=

n!

(k − 1)!(n− k)!

(
k + (n− k + 1)

k(n− k + 1)

)
=

n!

(k − 1)!(n− k)!

(
n+ 1

k(n− k + 1)

)
=

n!(n+ 1)

(k − 1)!k(n− k)!(n+ 1− k)!

=
(n+ 1)!

k!(n+ 1− k)!

=

(
n+ 1

k

)
Now let Pn be the proposition

(fg)(n) (a) =
n∑

k=0

(
n

k

)
f (k)(a)g(n−k)(a)

Base case: n = 0, then the left hand side is just fg(a) and the
right-hand-side is

0∑
k=0

(
n

k

)
f (k)(a)g(0−k)(a) =

(
0

0

)
f (0)(a)g(0−0)(a) = f(a)g(a)✓

Now suppose Pn is true and show Pn+1 is true, but:
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(fg)(n+1) (a) =
(
(fg)(n)

)′
(a)

=
n∑

k=0

(
n

k

)(
f (k)(a)g(n−k)(a)

)′

=
n∑

k=0

(
n

k

)
f (k+1)(a)g(n−k)(a) +

n∑
k=0

(
n

k

)
f (k)(a)g(n−k+1)(a) (Prod. Rule)

=
n+1∑
k=1

(
n

k − 1

)
f (k)(a)g(n−(k−1))(a) +

n∑
k=0

(
n

k

)
f (k)(a)g(n−k+1)(a)

=
n∑

k=1

(
n

k − 1

)
f (k)(a)gn−(k−1)(a) +

(
n

n

)
f (n+1)(a)g(a)

+

(
n

0

)
f (0)(a)g(n+1)(a) +

n∑
k=1

(
n

k

)
f (k)(a)g(n−k+1)(a)

=f(a)g(n+1)(a) +
n∑

k=1

((
n

k − 1

)
+

(
n

k

))
f (k)(a)gn+1−k(a) + f (n+1)(a)g(a)

=

(
n+ 1

0

)
f(a)g(n+1)(a) +

n∑
k=1

(
n+ 1

k

)
f (k)(a)gn+1−k(a)

+

(
n+ 1

n+ 1

)
f (n+1)(a)g(a)

=
n+1∑
k=0

(
n+ 1

k

)
f (k)(a)g(n+1−k)(a)✓

Hence Pn+1 is true and so Pn is true for all n □
29.4

Let h(x) = f(x)eg(x), then
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h(a) = f(a)eg(a) = 0, h(b) = f(b)e(g(b)) = 0

Since h(a) = h(b), by Rolle’s Theorem, there is some c in (a, b) such
that h′(c) = 0. However:

h′(x) =
(
f(x)eg(x)

)′
= f ′(x)eg(x)+f(x)eg(x)g′(x) = eg(x) (f ′(x) + f(x)g′(x))

h′(c) =0

eg(c) (f ′(c) + f(c)g′(c)) =0

f ′(c) + f(c)g′(c) =0 (Since eg(c) > 0)

Which is what we wanted □

29.5

Given x and h, use the above assumption with x + h instead of y to
conclude that

|f(x)− f(x+ h)| ≤ (x− (x+ h))2 = h2

Dividing by h, this implies that∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ≤ h

Since limh→0 h = 0, by the squeeze theorem, this implies that

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= 0

Hence f ′(x) = 0 for all x and so f is constant □

29.18(a)
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STEP 1: Let’s first show by induction on n that

|sn+1 − sn| ≤ an |s1 − s0|
The base case n = 0 gives |s1 − s0| ≤ a0 |s1 − s0|✓.

For the inductive step, assume |sn+1 − sn| ≤ an |s1 − s0|, then:

|sn+2 − sn| = |f(sn+1)− f(sn)|

=

∣∣∣∣f(sn+1)− f(sn)

sn+1 − sn

∣∣∣∣ |sn+1 − sn|

= |f ′(c)| |sn+1 − sn| (Mean Value Theorem)

≤a |sn+1 − sn| (Definition of a)

≤aan |s1 − s0| (Inductive Hypothesis)

=an+1 |s1 − s0|✓

STEP 2: Then WLOG, if n > m, it follows that

|sn − sm| = |sn − sn−1 + sn1
− sn−2 + · · ·+ sm+1 − sm|

≤ |sn − sn−1|+ |sn−1 − sn−2|+ · · ·+ |sm+1 − sm|
≤an−1 |s1 − s0|+ an−2 |s1 − s0|+ · · ·+ am |s1 − s0|
=
(
an−1 + an−2 + · · ·+ am

)
|s1 − s0|

=am
(
an−m−1 + an−m−2 + · · ·+ 1

)
|s1 − s0|

≤am
∣∣1 + a2 + a3 + · · ·

∣∣ |s1 − s0| (a > 0)

=am
1

1− a
|s1 − s0| (Geometric Series)

=am
|s1 − s0|
1− a

STEP 3: Now if ϵ > 0 is given since limm→ am = 0 (since a < 1) there
is N such that if m > N , then
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am < ϵ

(
1− a

|s1 − s0|

)

(Note s1 ̸= s0, unless f(s0) = s0, in which case we have a fixed point)
With that N , if m,n > N , then WLOG n > m, and then

|sn − sm| ≤ am
|s1 − s0|
1− a

< ϵ

(
1− a

|s1 − s0|

)
|s1 − s0|
1− a

= ϵ

Therefore (sn) is Cauchy and since R is complete, (sn) converges to
some s □

29.18(b)

By definition of sn we have sn = f(sn−1)

Now sn → s and hence sn−1 → s, but since f is continuous, this implies
f(sn−1) → f(s)

So taking the limit as n → ∞ in the equation sn = f(sn−1) we ulti-
mately get s = f(s), and therefore f has a fixed point □

30.6

Applying the hint and L’Hôpital’s rule (since ex → ∞), we get



HOMEWORK 10 − SELECTED BOOK SOLUTIONS 7

lim
x→∞

f(x) = lim
x→∞

f(x)ex

ex

Ĥ
= lim

x→∞

(f(x)ex)′

(ex)′

= lim
x→∞

f ′(x)ex + f(x)ex

ex

= lim
x→∞

f ′(x) + f(x)

=L

Therefore f(x) → L, and then

lim
x→∞

f ′(x) = lim
x→∞

(f ′(x) + f(x))−f(x) = lim
x→∞

f ′(x)+f(x)− lim
x→∞

f(x) = L−L = 0✓

30.7(a)

f(x) = x+ cos(x) sin(x) ≥ x− 1

Since limx→∞ x− 1 = ∞, by comparison of limits, limx→∞ f(x) = ∞

g(x) = esin(x) (x+ cos(x) sin(x)) ≥ e−1 (x− 1)

Since limx→∞ e−1 (x− 1) = ∞, by comp. of limits, limx→∞ g(x) = ∞

30.7(b)

f ′(x) =1− sin(x) sin(x) + cos(x) cos(x)

=1− sin2(x) + cos( x)

= cos2(x) + cos2(x)

=2 cos2(x)
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g′(x) =esin(x) cos(x) (x+ cos(x) sin(x)) + esin(x) (x+ cos(x) sin(x))′

=esin(x) cos(x) (x+ cos(x) sin(x)) + esin(x)
(
2 cos2(x)

)
=esin(x) cos(x) (x+ cos(x) sin(x) + 2 cos(x))

=esin(x) cos(x) (2 cos(x) + f(x))

30.7(c)

f ′(x)

g′(x)
=

2 cos2(x)

esin(x) cos(x) (2 cos(x) + f(x))

=
2 cos(x)

esin(x) (2 cos(x) + f(x))

=
2e− sin(x) cos(x)

2 cos(x) + f(x)

30.7(d)

The first part follows from the squeeze theorem, since the numerator
is bounded by 2e whereas the denominator 2 cos(x) + f(x) → ∞ (by
comparison of limits). As for the second limit:

lim
x→∞

f(x)

g(x)
= lim

x→∞

f(x)

esin(x)f(x)
= lim

x→∞

1

esin(x)
Does not Exist


	28.6
	28.15
	29.4
	29.5
	29.18(a)
	29.18(b)
	30.6
	30.7(a)
	30.7(b)
	30.7(c)
	30.7(d)

