MATH 409 - HOMEWORK 10

Reading: Sections 28, 29, and 30

- Section 28: 6 (don't observe, do it), 15, AP1, AP2, AP3
- Section 29: 4, 5, 18, AP4
- Section 30: 6, 7, AP5

Additional Problem 1:

(a) Use the definition of the derivative, as well as the limits from AP3 from last time to show that if $f(x)=\sin (x)$, then $f^{\prime}(x)=$ $\cos (x)$
(b) Repeat (a) but with $f(x)=\cos (x)$
(c) Use the quotient rule to show that if $f(x)=\tan (x)$, then $f^{\prime}(x)=$ $\sec ^{2}(x)$
(d) Use the Inverse function theorem to show that if $f(x)=\tan ^{-1}(x)$, then $f^{\prime}(x)=\frac{1}{1+x^{2}}$ (this is in the notes)

Additional Problem 2: Prove the Quotient Rule by differentiating both sides of the following identity:

$$
\ln \left(\frac{f(x)}{g(x)}\right)=\ln (f(x))-\ln (g(x))
$$

Date: Due: Friday, November 19, 2021.

You're allowed to use that $(\ln (x))^{\prime}=\frac{1}{x}$.

Additional Problem 3:

(a) Consider the following function:

$$
f(x)= \begin{cases}e^{-\frac{1}{x}} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Use the definition of the derivative and the hints at the end to show that $f^{\prime}(0)=0$
(b) It can be shown (do not do this) that $f^{(n)}(0)=0$ for all n.

Definition:

The Maclaurin series of f is $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$
What is the Maclaurin series of the function in (a)? Do you think it's a good approximation to f ?

Note: This is an example of a non-analytic function. In other words, a function which does not equal to its Maclaurin series

Additional Problem 4: Suppose $f(x)$ is a positive function such that $f^{\prime}(x)=f(x)$ and $f(0)=1$ (It's true that $f(x)=e^{x}$ but do not use this)

Use the hints at the end to show that for all x and a :
(a) $f(x+a)=f(x) f(a)$
(b) $f(-x)=\frac{1}{f(x)}$
(c) $f(a x)=(f(x))^{a}$

Congratulations, you've just shown that $e^{x+a}=e^{x} e^{a}, e^{-x}=\frac{1}{e^{x}}$, and $e^{a x}=\left(e^{x}\right)^{a} \oplus$

Additional Problem 5: What happens if you apply L'Hôpital twice to the following limit?

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x}
$$

Find another (calculus) way of evaluating this limit.

Hints:

AP3 Justify all the steps in the following calculation:

$$
\frac{1}{x}=x\left(\frac{1}{x}\right)^{2}=2 x \frac{1}{2}\left(\frac{1}{x}\right)^{2} \leq 2 x \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{x}\right)^{n}=2 x e^{\frac{1}{x}}
$$

AP4 For (a), fix a and consider $g(x)=\frac{f(x+a)}{f(x)}$. Then calculate $g^{\prime}(x)$ and conclude $g(x)=C$. To find C, use $C=g(0)$. For part (b) you consider $g(x)=f(x) f(-x)$ and for part (c) you consider $g(x)=\frac{f(a x)}{f(x)^{a}}$
28.15 Before you do the inductive step, first show that

$$
\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}
$$

Then use that $(f g)^{(n+1)}=\left[(f g)^{(n)}\right]^{\prime}$. For the sum where you put the derivative on f, it might be good to change variables from $k+1$ to k
and noticing that if k goes from 0 to n, then $k+1$ goes from 1 to $n+1$. Also isolate the two "boundary" terms with $k=0$ and $k=n+1$ so that you can write the middle as a sum from $k=1$ to $k=n$. This allows you to use the formula above.
29.18 First prove by induction that $\left|s_{n+1}-s_{n}\right| \leq a^{n}\left|s_{1}-s_{0}\right|$. Then justify the steps in the following calculation (assume WLOG $n>m$)

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & \leq\left|s_{n}-s_{n-1}\right|+\cdots+\left|s_{m+1}-s_{m}\right| \\
& \leq a^{n-1}\left|s_{1}-s_{0}\right|+\cdots+a^{m}\left|s_{1}-s_{0}\right| \\
& \leq a^{m}\left|s_{1}-s_{0}\right| \sum_{k=0}^{m-n-1} a^{k} \\
& \leq a^{m}\left|s_{1}-s_{0}\right| \frac{1}{1-a}
\end{aligned}
$$

Finally, since $\lim _{m \rightarrow \infty} a^{m}=0$ (since $a<1$), there is N such that if $m>N$ then $a^{m}<\frac{\epsilon(1-a)}{\left|s_{1}-s_{0}\right|}$ and use this to conclude that $\left(s_{n}\right)$ is Cauchy.

