
HOMEWORK 11 − AP SOLUTIONS

AP 1

Here n = 2 and a1 = 0 and A1 = rationals in [0, 1], which has measure
m(A1) = 0, and a2 = 1 and A2 = irrationals in [0, 1], which has measure
m(A2) = 1 −m(A1) = 1 − 0 = 1, and therefore by the definition, we
have

∫ 1

0

f(x)dx = a1m(A1) + a2m(A2) = 0× 0 + 1× 1 = 1

AP 2

Let P be the partition P = {0 = t0 < t1 < · · · < tn = 1}

Since f(x) = x is increasing, then

M(f, [tk−1, tk]) = f(tk) = tk (Right Endpoint)

U(f, P ) =
n∑

k=1

M(f, [tk−1, tk]) (α(tk)− α(tk−1))

=
n∑

k=1

tk

(
(tk)

2 − (tk−1)
2
)
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2 HOMEWORK 11 − AP SOLUTIONS

Given n, let P be the evenly spaced Calculus partition with tk =
k
n :

In that case,

(tk)
2 − (tk−1)

2 =
k2

n2
− (k − 1)2

n2
=

k2 − k2 + 2k − 1

n2
=

2k − 1

n2

U(f, P ) =
n∑

k=1

(
k

n

)(
2k − 1

n2

)
=

n∑
k=1

2k2 − k

n3

=
2

n3

n∑
k=1

k2 − 1

n3

n∑
k=1

k

=
2

n3

(
n(n+ 1)(2n+ 1)

6

)
− 1

n3

n(n+ 1)

2

=
(n+ 1)(2n+ 1)

3n2
− n+ 1

2n2

Since U(f) is the inf over all partitions, we must have

U(f) ≤ U(f, P ) =
(n+ 1)(2n+ 1)

3n2
− n+ 1

2n2

Therefore, taking the limit as n → ∞ of the right hand side, we get
U(f) ≤ 2

3 − 0 = 2
3

This is similar to the above, except that here m(f, [tk−1, tk]) = tk−1

(Left endpoint), and so, using sup we get L(f) ≥ 2
3 .



HOMEWORK 11 − AP SOLUTIONS 3

Since U(f) ≤ 2
3 ≤ L(f) and because L(f) ≤ U(f), we get L(f) =

U(f) = 2
3 .

Hence
∫ 1

0 xdα(x) = 2
3 .

Note: This is actually the same as:∫ 1

0

xα′(x)dx =

∫ 1

0

x(2x)dx = 2

∫ 1

0

x2dx =
2

3

AP 3

ln

(
b∏
a

(f(x))dx
)

= ln
(
lim
n→∞

(f(x1))
t1−t0 (f(x2))

t2−t1 · · · (f(xn))tn−tn−1

)
= lim

n→∞
ln
(
(f(x1))

t1−t0 (f(x2))
t2−t1 · · · (f(xn))tn−tn−1

)
= lim

n→∞
(t1 − t0) ln (f(x1)) + (t2 − t1) ln (f(x2))

+ · · ·+ (tn − tn−1) ln (f(xn))

= lim
n→∞

n∑
k=1

ln (f(xk)) (tk − tk−1)

=

∫ b

a

ln (f(x)) dx

Therefore:
b∏
a

(f(x))dx = e
∫ b

a
ln(f(x))dx

AP 4(a)

First suppose p ̸= 1
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∫ ∞

1

1

xp
dx = lim

t→∞

∫ t

1

1

xp
dx

= lim
t→∞

∫ t

1

x−pdx

= lim
t→∞

[
x1−p

1− p

]x=t

x=1

= lim
t→∞

t1−p

1− p
− 1

1− p

But if p < 1, then 1 − p > 0 and so t1−p → ∞, and so the integral
diverges. And if p > 1, then 1 − p < 0, and so t1−p → 0 and so the
integral converges to −1

1−p =
1

p−1

Finally, if p = 1, then

∫ ∞

1

1

x
dx = lim

t→∞

∫ t

1

1

x
dx

= lim
t→∞

ln(t)− ln(1)

= lim
t→∞

ln(t)

=∞

And so if p = 1, the integral diverges as well.

Therefore, the integral converges if and only if p > 1

AP 4(b)

The (possible) singularity here is at x = 0. Again first suppose p ̸= 1
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∫ 1

0

1

xp
dx = lim

t→0+

∫ 1

t

1

xp
dx

= lim
t→0+

∫ 1

t

x−pdx

= lim
t→0+

[
x1−p

1− p

]x=1

x=t

= lim
t→0+

1

1− p
− t1−p

1− p

But if p < 1, then 1 − p > 0 and so t1−p → 0, and so the integral
converges to 1

1−p . And if p > 1, then 1− p < 0, and so t1−p → ∞ and
so the integral diverges

Finally, if p = 1, then∫ 1

0

1

x
dx = lim

t→0+

∫ 1

t

1

x
dx

= lim
t→0+

ln(1)− ln(t)

= lim
t→0+

− ln(t)

=∞
And so if p = 1, the integral diverges as well.

Therefore, the integral converges if and only if p < 1

AP 5

Notice that our integral equation(∫ x

0

f(t)dt

)(∫ x

0

1

f(t)
dt

)
= x2
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Becomes: (∫ x

0

(√
f
)2

dt

)(∫ x

0

(
1√
f

)2

dt

)
=

(∫ x

0

1dt

)2

And since 1 =
√
f
(

1√
f

)
, we have equality in the Cauchy-Schwarz in-

equality with
√
f and 1√

f
.

Therefore one function is a multiple of the other one, say
√
f = C

(
1√
f

)
and cross-multiplying we get

(√
f
)2

= C and so f = C (here C > 0
since f is positive), and you can check that f = C satisfies the original
equation as well. □
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