HOMEWORK 11 — SELECTED BOOK SOLUTIONS

32.1
STEP 1: Partition

P={0=ty<ti <---<t,=0b}

STEP 2: U(f, P)

Since 23 is increasing, we have
M(f, [tr—1,ta]) = f(t) = ()" (Right Endpoint)
U(f, P) =Y M(f,[te1,t]) (b — tia) = > (8)* (5 — t51)
k=1 k=1
STEP 3: U(f)

Given n, let P be the evenly spaced Calculus partition with ¢, = %
In that case t;, — tp_1 = % and
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Upshot: Since U(f) is the inf over all partitions, we must have

U(f) <U(f,P) = b; <n—|—1>2

n
Therefore, taking the limit as n — oo of the right hand side, we get
U(f) <%
STEP 4: L(f)

This is similar to the above, except that here m(f, [tx_1,tx]) = (tkfl)?’
(Left endpoint), and so, using sup we get L(f) > %.

Since U(f) < % < L(f) and because L(f) < U(f), we get L(f) =
U(f) =14 b

Hence f(z) = 23 is Darboux integrable and fob dr = 7.
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33.4
Consider the following function f on [0, 1]

1 if 2 is rational
flz) = T
—1 if x is irrational

Then for any partition P, M (f, [tx_1,tx]) = 1 and m(f, [tx_1,tx]) = —1,
and so

3
3

Uf,P)=> M(f, [teor, i) te—trs1) =Y 1(ti—tp1) =tp—to =1-0=1
k=1 k=1

And so, taking inf over all partitions P, we get U(f) =

n

Zm [thot b)) (te—tho1) = > (= 1)(tr—tro1) = — (tn — to) = —1
k=1
And taking sup over all partitions P, we get L(f) = —1.

Since U(f) # L(f), f is not Darboux integrable

However, |f| =1 (the constant function 1), which is integrable

33.7

Fix a partition P, then for any x and y in a given sub-piece [t;_1, tx],
we have
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(f(@)" = (f())" = (f(z) + f(y)) (f (&) = f(y))
<[f(x) + FWIf (=) = fy)l
<(f @)+ W) [ () = fy)l

<(B+B)|f(z) = f(y)l
=2B|f(x) = f(y)]

Then, taking the sup over z € [ty_1,t;] and then the inf over y €
[tkz—b tk], we get

M(f27 [tk—lv tk]) - m(f27 [tk—h tk]) <2B |M(f= [tk—la tk]) - m(fa [tk—la tk])‘
=2B (M(f7 [tk—la tk]) - m(f7 [tk—la tk]))

(Here we used the fact that M > m)

Finally, summing over k, we get

U(f27p)_L(f27P) §2B(U(f,P)—L(f,P))

For part (b), let € > 0 be given, then since f is integrable on [a, b],
by the Cauchy Criterion, there is a partition P such that U(f, P) —

L(f,P) <

With the same P, using the result of (a), we get

U(f*,P)— L(f*, P) <2B(U(f,P) — L(f,P)) < (2B) (%) — e/
Hence, by the Cauchy criterion again, f? is integrable on [a, ]

33.8
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Since f and g are integrable on [a, b], then so are f+ g and f—g. Then
since f 4 g and f — g are bounded (since f and g are), by the previous
exercise, (f +¢)% and (f — g)? are integrable on [a, b], and therefore so
1S

fg= i ((f+9)7—(f—9)7)

For part (b), since f—g is integrable on [a, b], sois | f — ¢g|, and therefore

max(f, g) = %(f+g)+%|f—gl

is integrable on [a, b]. Similarly,

: 1 1
min(f, ) = 5(f +9) =5 |f =4l
is integrable on |[a, 0]

33.10

Let € > 0 be given, then since f(z) is continuous on [§, 1], by the

Cauchy criterion, there is a partition P; on that interval such that
U(f7P1) _L(fapl) <z£1

Similarly there is a partition P, on [~1,—g] such that U(f, P») —
L(f, PQ) < i

Let P = P, U P, which is a partition of [—1, 1]

Then since
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We ultimately obtain U(f, P) — L(f, P) < { + § + { = € and therefore
by the Cauchy criterion, f is integrable on [—1, 1]

2

34.8

Let u = tan~'(z), dv = z, then du = ==, v = %, and so

1 2 1 1 2
1
/xtanl(:v)dx: [x—tanl(x)] —/ (:1:_> (2—> dx
0 2 0 0 \ 2 xc+1

1 1t a?

=—tan (1) — = d
o tan (1) 2/0 21
L/my 1! 1

=—(=)—=/[ 1- d
2 (4) 2/0 221
T 1 1

=373 |z — tan 1(1‘)]0

_r_ 1 (1 —tan'(1) — 04 tan™'(0))
8 2
T 1 7

T 1__)
8 2 4

1 . s

8 2 8

1

42

How painful! &
This time let u = tan~*(z), dv = x but du = mglﬂ v = x22+1, and so
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/Ola:tan_l(a:)dx: [x2;1tan_1(x)]()—/ol (x22“) <x21+1> da

Soooo much better! ®

As for the second integral, let u = In(x + 2), dv = 1, then du = x_jltw
v=21x+ 2, and so

T+ 2

/ In(24+2)da = (2+2) In(2+2)— / (242) <

Finally, for the third integral, let u = tan™! (\/x + 1), dv = 1, then

P 1 1 . 1 1 o
du = 1+(\/m)2 <2\/x+1) T a2 <2¢x+1) and dv = x + 2 and so

/tan_l(\/i)dx—x—l—Qtanl x—|—1) /$+2)<xi2)(2\/;7+1>dx

(
T+ 2) tan1< T
(

) dr = (z+2) In(z+2)—2+C

_l_
—_

1
/2\/x—1—
=(z + 2) tan ! :1:+1) Ve+1+C

34.10

fo x)dz is the area under the graph of y = g(z), whereas fo (u)du
is the area to the left of the graph of y = g(z) (since y = g(x ) S x =
g 1(y)). Therefore the sum of the integrals is just the area of the
square with sides [0, 1] and [0, 1], which is 1
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