HOMEWORK 11 - SELECTED BOOK SOLUTIONS

32.1

STEP 1: Partition

$$
P=\left\{0=t_{0}<t_{1}<\cdots<t_{n}=b\right\}
$$

STEP 2: $U(f, P)$
Since x^{3} is increasing, we have

$$
\begin{gathered}
M\left(f,\left[t_{k-1}, t_{k}\right]\right)=f\left(t_{k}\right)=\left(t_{k}\right)^{3} \text { (Right Endpoint) } \\
U(f, P)=\sum_{k=1}^{n} M\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)=\sum_{k=1}^{n}\left(t_{k}\right)^{3}\left(t_{k}-t_{k-1}\right)
\end{gathered}
$$

STEP 3: $U(f)$
Given n, let P be the evenly spaced Calculus partition with $t_{k}=\frac{b k}{n}$
In that case $t_{k}-t_{k-1}=\frac{b}{n}$ and

[^0]\[

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n}\left(\frac{b k}{n}\right)^{3}\left(\frac{b}{n}\right) \\
& =\sum_{k=1}^{n} \frac{b^{4} k^{3}}{n^{4}} \\
& =\frac{b^{4}}{n^{4}} \sum_{k=1}^{n} k^{3} \\
& =\frac{b^{4}}{n^{4}}\left(\frac{n^{2}(n+1)^{2}}{4}\right) \\
& =\frac{b^{4}(n+1)^{2}}{4 n^{2}} \\
& =\frac{b^{4}}{4}\left(\frac{n+1}{n}\right)^{2}
\end{aligned}
$$
\]

Upshot: Since $U(f)$ is the inf over all partitions, we must have

$$
U(f) \leq U(f, P)=\frac{b^{4}}{4}\left(\frac{n+1}{n}\right)^{2}
$$

Therefore, taking the limit as $n \rightarrow \infty$ of the right hand side, we get $U(f) \leq \frac{b^{4}}{4}$

STEP 4: $L(f)$
This is similar to the above, except that here $m\left(f,\left[t_{k-1}, t_{k}\right]\right)=\left(t_{k-1}\right)^{3}$ (Left endpoint), and so, using sup we get $L(f) \geq \frac{b^{4}}{4}$.

Since $U(f) \leq \frac{b^{4}}{4} \leq L(f)$ and because $L(f) \leq U(f)$, we get $L(f)=$ $U(f)=\frac{b^{4}}{4}$. Hence $f(x)=x^{3}$ is Darboux integrable and $\int_{0}^{b} x^{3} d x=\frac{b^{4}}{4}$.

Consider the following function f on $[0,1]$

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ -1 & \text { if } x \text { is irrational }\end{cases}
$$

Then for any partition $P, M\left(f,\left[t_{k-1}, t_{k}\right]\right)=1$ and $m\left(f,\left[t_{k-1}, t_{k}\right]\right)=-1$, and so
$U(f, P)=\sum_{k=1}^{n} M\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)=\sum_{k=1}^{n} 1\left(t_{k}-t_{k-1}\right)=t_{n}-t_{0}=1-0=1$
And so, taking inf over all partitions P, we get $U(f)=1$
$L(f, P)=\sum_{k=1}^{n} m\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)=\sum_{k=1}^{n}(-1)\left(t_{k}-t_{k-1}\right)=-\left(t_{n}-t_{0}\right)=-1$
And taking sup over all partitions P, we get $L(f)=-1$.
Since $U(f) \neq L(f), f$ is not Darboux integrable
However, $|f|=1$ (the constant function 1), which is integrable
33.7

Fix a partition P, then for any x and y in a given sub-piece $\left[t_{k-1}, t_{k}\right]$, we have

$$
\begin{aligned}
(f(x))^{2}-(f(y))^{2} & =(f(x)+f(y))(f(x)-f(y)) \\
& \leq|f(x)+f(y)||f(x)-f(y)| \\
& \leq(|f(x)|+|f(y)|)|f(x)-f(y)| \\
& \leq(B+B)|f(x)-f(y)| \\
& =2 B|f(x)-f(y)|
\end{aligned}
$$

Then, taking the sup over $x \in\left[t_{k-1}, t_{k}\right]$ and then the inf over $y \in$ $\left[t_{k-1}, t_{k}\right]$, we get

$$
\begin{aligned}
M\left(f^{2},\left[t_{k-1}, t_{k}\right]\right)-m\left(f^{2},\left[t_{k-1}, t_{k}\right]\right) & \leq 2 B\left|M\left(f,\left[t_{k-1}, t_{k}\right]\right)-m\left(f,\left[t_{k-1}, t_{k}\right]\right)\right| \\
& =2 B\left(M\left(f,\left[t_{k-1}, t_{k}\right]\right)-m\left(f,\left[t_{k-1}, t_{k}\right]\right)\right)
\end{aligned}
$$

(Here we used the fact that $M \geq m$)
Finally, summing over k, we get

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B(U(f, P)-L(f, P))
$$

For part (b), let $\epsilon>0$ be given, then since f is integrable on $[a, b]$, by the Cauchy Criterion, there is a partition P such that $U(f, P)-$ $L(f, P)<\frac{\epsilon}{2 B}$.

With the same P, using the result of (a), we get

$$
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B(U(f, P)-L(f, P))<(2 B)\left(\frac{\epsilon}{2 B}\right)=\epsilon \checkmark
$$

Hence, by the Cauchy criterion again, f^{2} is integrable on $[a, b]$

Since f and g are integrable on $[a, b]$, then so are $f+g$ and $f-g$. Then since $f+g$ and $f-g$ are bounded (since f and g are), by the previous exercise, $(f+g)^{2}$ and $(f-g)^{2}$ are integrable on $[a, b]$, and therefore so is

$$
f g=\frac{1}{4}\left((f+g)^{2}-(f-g)^{2}\right)
$$

For part (b), since $f-g$ is integrable on $[a, b]$, so is $|f-g|$, and therefore

$$
\max (f, g)=\frac{1}{2}(f+g)+\frac{1}{2}|f-g|
$$

is integrable on $[a, b]$. Similarly,

$$
\min (f, g)=\frac{1}{2}(f+g)-\frac{1}{2}|f-g|
$$

is integrable on $[a, b]$
33.10

Let $\epsilon>0$ be given, then since $f(x)$ is continuous on $\left[\frac{\epsilon}{8}, 1\right]$, by the Cauchy criterion, there is a partition P_{1} on that interval such that $U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\frac{\epsilon}{4}$

Similarly there is a partition P_{2} on $\left[-1,-\frac{\epsilon}{8}\right]$ such that $U\left(f, P_{2}\right)-$ $L\left(f, P_{2}\right)<\frac{\epsilon}{4}$.

Let $P=P_{1} \cup P_{2}$, which is a partition of $[-1,1]$
Then since

$$
M\left(f,\left[-\frac{\epsilon}{8}, \frac{\epsilon}{8}\right]\right)-m\left(f,\left[-\frac{\epsilon}{8}, \frac{\epsilon}{8}\right]\right)\left(\frac{\epsilon}{8}-\frac{-\epsilon}{8}\right)<(1-(-1)) \frac{\epsilon}{4}=\frac{\epsilon}{2}
$$

We ultimately obtain $U(f, P)-L(f, P)<\frac{\epsilon}{4}+\frac{\epsilon}{2}+\frac{\epsilon}{4}=\epsilon$ and therefore by the Cauchy criterion, f is integrable on $[-1,1]$
34.8

Let $u=\tan ^{-1}(x), d v=x$, then $d u=\frac{1}{x^{2}+1}, v=\frac{x^{2}}{2}$, and so

$$
\begin{aligned}
\int_{0}^{1} x \tan ^{-1}(x) d x & =\left[\frac{x^{2}}{2} \tan ^{-1}(x)\right]_{0}^{1}-\int_{0}^{1}\left(\frac{x^{2}}{2}\right)\left(\frac{1}{x^{2}+1}\right) d x \\
& =\frac{1}{2} \tan ^{-1}(1)-\frac{1}{2} \int_{0}^{1} \frac{x^{2}}{x^{2}+1} d x \\
& =\frac{1}{2}\left(\frac{\pi}{4}\right)-\frac{1}{2} \int_{0}^{1} 1-\frac{1}{x^{2}+1} d x \\
& =\frac{\pi}{8}-\frac{1}{2}\left[x-\tan ^{-1}(x)\right]_{0}^{1} \\
& =\frac{\pi}{8}-\frac{1}{2}\left(1-\tan ^{-1}(1)-0+\tan ^{-1}(0)\right) \\
& =\frac{\pi}{8}-\frac{1}{2}\left(1-\frac{\pi}{4}\right) \\
& =\frac{\pi}{8}-\frac{1}{2}+\frac{\pi}{8} \\
& =\frac{\pi}{4}-\frac{1}{2}
\end{aligned}
$$

How painful! ©
This time let $u=\tan ^{-1}(x), d v=x$ but $d u=\frac{1}{x^{2}+1} v=\frac{x^{2}+1}{2}$, and so

$$
\begin{aligned}
\int_{0}^{1} x \tan ^{-1}(x) d x & =\left[\frac{x^{2}+1}{2} \tan ^{-1}(x)\right]_{0}^{1}-\int_{0}^{1}\left(\frac{x^{2}+1}{2}\right)\left(\frac{1}{x^{2}+1}\right) d x \\
& =\frac{2}{2} \tan ^{-1}(1)-\int_{0}^{1} \frac{1}{2} d x \\
& =\left(\frac{\pi}{4}\right)-\frac{1}{2}
\end{aligned}
$$

Soooo much better! $)^{-}$

As for the second integral, let $u=\ln (x+2), d v=1$, then $d u=\frac{1}{x+2}$, $v=x+2$, and so
$\int \ln (x+2) d x=(x+2) \ln (x+2)-\int(x+2)\left(\frac{1}{x+2}\right) d x=(x+2) \ln (x+2)-x+C$
Finally, for the third integral, let $u=\tan ^{-1}(\sqrt{x+1}), d v=1$, then $d u=\frac{1}{1+(\sqrt{x+1})^{2}}\left(\frac{1}{2 \sqrt{x+1}}\right)=\frac{1}{x+2}\left(\frac{1}{2 \sqrt{x+1}}\right)$ and $d v=x+2$ and so

$$
\begin{aligned}
\int \tan ^{-1}(\sqrt{x+1}) d x & =(x+2) \tan ^{-1}(\sqrt{x+1})-\int(x+2)\left(\frac{1}{x+2}\right)\left(\frac{1}{2 \sqrt{x+1}}\right) d x \\
& =(x+2) \tan ^{-1}(\sqrt{x+1})-\int \frac{1}{2 \sqrt{x+1}} d x \\
& =(x+2) \tan ^{-1}(\sqrt{x+1})-\sqrt{x+1}+C
\end{aligned}
$$

34.10
$\int_{0}^{1} g(x) d x$ is the area under the graph of $y=g(x)$, whereas $\int_{0}^{1} g^{-1}(u) d u$ is the area to the left of the graph of $y=g(x)$ (since $y=g(x) \Leftrightarrow x=$ $\left.g^{-1}(y)\right)$. Therefore the sum of the integrals is just the area of the square with sides $[0,1]$ and $[0,1]$, which is 1

[^0]: Date: Friday, December 3, 2021.

