
HOMEWORK 11 − SELECTED BOOK SOLUTIONS

32.1

STEP 1: Partition

P = {0 = t0 < t1 < · · · < tn = b}

STEP 2: U(f, P )

Since x3 is increasing, we have

M(f, [tk−1, tk]) = f(tk) = (tk)
3 (Right Endpoint)

U(f, P ) =
n∑

k=1

M(f, [tk−1, tk]) (tk − tk−1) =
n∑

k=1

(tk)
3 (tk − tk−1)

STEP 3: U(f)

Given n, let P be the evenly spaced Calculus partition with tk =
bk
n

In that case tk − tk−1 =
b
n and
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U(f, P ) =
n∑

k=1

(
bk

n

)3(
b

n

)
=

n∑
k=1

b4k3

n4

=
b4

n4

n∑
k=1

k3

=
b4

n4

(
n2(n+ 1)2

4

)
=
b4(n+ 1)2

4n2

=
b4

4

(
n+ 1

n

)2

Upshot: Since U(f) is the inf over all partitions, we must have

U(f) ≤ U(f, P ) =
b4

4

(
n+ 1

n

)2

Therefore, taking the limit as n → ∞ of the right hand side, we get
U(f) ≤ b4

4

STEP 4: L(f)

This is similar to the above, except that here m(f, [tk−1, tk]) = (tk−1)
3

(Left endpoint), and so, using sup we get L(f) ≥ b4

4 .

Since U(f) ≤ b4

4 ≤ L(f) and because L(f) ≤ U(f), we get L(f) =

U(f) = b4

4 . Hence f(x) = x3 is Darboux integrable and
∫ b

0 x
3dx = b4

4 .
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33.4

Consider the following function f on [0, 1]

f(x) =

{
1 if x is rational

−1 if x is irrational

Then for any partition P , M(f, [tk−1, tk]) = 1 andm(f, [tk−1, tk]) = −1,
and so

U(f, P ) =
n∑

k=1

M(f, [tk−1, tk])(tk−tk−1) =
n∑

k=1

1(tk−tk−1) = tn−t0 = 1−0 = 1

And so, taking inf over all partitions P , we get U(f) = 1

L(f, P ) =
n∑

k=1

m(f, [tk−1, tk])(tk−tk−1) =
n∑

k=1

(−1)(tk−tk−1) = − (tn − t0) = −1

And taking sup over all partitions P , we get L(f) = −1.

Since U(f) ̸= L(f), f is not Darboux integrable

However, |f | = 1 (the constant function 1), which is integrable

33.7

Fix a partition P , then for any x and y in a given sub-piece [tk−1, tk],
we have
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(f(x))2 − (f(y))2 =(f(x) + f(y)) (f(x)− f(y))

≤ |f(x) + f(y)| |f(x)− f(y)|
≤ (|f(x)|+ |f(y)|) |f(x)− f(y)|
≤ (B +B) |f(x)− f(y)|
=2B |f(x)− f(y)|

Then, taking the sup over x ∈ [tk−1, tk] and then the inf over y ∈
[tk−1, tk], we get

M(f 2, [tk−1, tk])−m(f 2, [tk−1, tk]) ≤2B |M(f, [tk−1, tk])−m(f, [tk−1, tk])|
=2B (M(f, [tk−1, tk])−m(f, [tk−1, tk]))

(Here we used the fact that M ≥ m)

Finally, summing over k, we get

U(f 2, P )− L(f 2, P ) ≤ 2B (U(f, P )− L(f, P ))

For part (b), let ϵ > 0 be given, then since f is integrable on [a, b],
by the Cauchy Criterion, there is a partition P such that U(f, P ) −
L(f, P ) < ϵ

2B .

With the same P , using the result of (a), we get

U(f 2, P )− L(f 2, P ) ≤ 2B (U(f, P )− L(f, P )) < (2B)
( ϵ

2B

)
= ϵ✓

Hence, by the Cauchy criterion again, f 2 is integrable on [a, b]

33.8
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Since f and g are integrable on [a, b], then so are f+g and f−g. Then
since f + g and f − g are bounded (since f and g are), by the previous
exercise, (f + g)2 and (f − g)2 are integrable on [a, b], and therefore so
is

fg =
1

4

(
(f + g)2 − (f − g)2

)
For part (b), since f−g is integrable on [a, b], so is |f − g|, and therefore

max(f, g) =
1

2
(f + g) +

1

2
|f − g|

is integrable on [a, b]. Similarly,

min(f, g) =
1

2
(f + g)− 1

2
|f − g|

is integrable on [a, b]

33.10

Let ϵ > 0 be given, then since f(x) is continuous on [ ϵ8 , 1], by the
Cauchy criterion, there is a partition P1 on that interval such that
U(f, P1)− L(f, P1) <

ϵ
4

Similarly there is a partition P2 on [−1,− ϵ
8 ] such that U(f, P2) −

L(f, P2) <
ϵ
4 .

Let P = P1 ∪ P2, which is a partition of [−1, 1]

Then since

M(f, [− ϵ

8
,
ϵ

8
])−m(f, [− ϵ

8
,
ϵ

8
])

(
ϵ

8
− −ϵ

8

)
< (1− (−1))

ϵ

4
=

ϵ

2
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We ultimately obtain U(f, P )−L(f, P ) < ϵ
4 +

ϵ
2 +

ϵ
4 = ϵ and therefore

by the Cauchy criterion, f is integrable on [−1, 1]

34.8

Let u = tan−1(x), dv = x, then du = 1
x2+1 , v = x2

2 , and so

∫ 1

0

x tan−1(x)dx =

[
x2

2
tan−1(x)

]1
0

−
∫ 1

0

(
x2

2

)(
1

x2 + 1

)
dx

=
1

2
tan−1(1)− 1

2

∫ 1

0

x2

x2 + 1
dx

=
1

2

(π
4

)
− 1

2

∫ 1

0

1− 1

x2 + 1
dx

=
π

8
− 1

2

[
x− tan−1(x)

]1
0

=
π

8
− 1

2

(
1− tan−1(1)− 0 + tan−1(0)

)
=
π

8
− 1

2

(
1− π

4

)
=
π

8
− 1

2
+

π

8

=
π

4
− 1

2

How painful! /

This time let u = tan−1(x), dv = x but du = 1
x2+1 v = x2+1

2 , and so
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∫ 1

0

x tan−1(x)dx =

[
x2 + 1

2
tan−1(x)

]1
0

−
∫ 1

0

(
x2 + 1

2

)(
1

x2 + 1

)
dx

=
2

2
tan−1(1)−

∫ 1

0

1

2
dx

=
(π
4

)
− 1

2

Soooo much better! ,

As for the second integral, let u = ln(x + 2), dv = 1, then du = 1
x+2 ,

v = x+ 2, and so

∫
ln(x+2)dx = (x+2) ln(x+2)−

∫
(x+2)

(
1

x+ 2

)
dx = (x+2) ln(x+2)−x+C

Finally, for the third integral, let u = tan−1
(√

x+ 1
)
, dv = 1, then

du = 1

1+(
√
x+1)

2

(
1

2
√
x+1

)
= 1

x+2

(
1

2
√
x+1

)
and dv = x+ 2 and so

∫
tan−1

(√
x+ 1

)
dx =(x+ 2) tan−1

(√
x+ 1

)
−

∫
(x+ 2)

(
1

x+ 2

)(
1

2
√
x+ 1

)
dx

=(x+ 2) tan−1
(√

x+ 1
)
−

∫
1

2
√
x+ 1

dx

=(x+ 2) tan−1
(√

x+ 1
)
−

√
x+ 1 + C

34.10∫ 1

0 g(x)dx is the area under the graph of y = g(x), whereas
∫ 1

0 g−1(u)du
is the area to the left of the graph of y = g(x) (since y = g(x) ⇔ x =
g−1(y)). Therefore the sum of the integrals is just the area of the
square with sides [0, 1] and [0, 1], which is 1
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