MATH 409 – HOMEWORK 2

Readings: Sections 2, 3, and 4. Ignore the Rational Zeros Theorem in section 2; it's not very important for this class. No need to memorize the field/ordered field axioms in section 3, but know how to prove all the properties in that section. The Triangle Inequality is **very** important. Section 4 is **very** hard but **the** most important section in the book, make sure to understand every single detail in it. The Archimedean Property and the Denseness of \mathbb{Q} will be part of the next homework.

- Section 2: 4, AP1 (Optional: AP5)
- Section 3: 5, 6b, 8, AP2, AP3, (Optional: AP6)
- Section 4: 7, 8, 14, AP4

Hints: For 4 in section 2, just do it by contradiction; you may assume $\sqrt{3}$ is irrational. For 8 in section 3, do it by contradiction.

Additional Problem 1: Here is how to actually construct \mathbb{Q} : Let $A = \mathbb{Z} \times \mathbb{Z}^*$ (where \mathbb{Z}^* is the set of nonzero integers) and define a relation \sim on A by:

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc$$

(a) Prove that \sim is an equivalence relation on A (see this link for a definition)

Date: Due: Friday, September 10, 2021.

(b) Give three examples of elements in the equivalence class of [(1,2)]. This equivalence class is what we call $\frac{1}{2}$.

Additional Problem 2: Here are some applications of the triangle inequality in real (analysis) life.

- (a) Show that if $|x y| < \frac{\epsilon}{2}$ and $|y| < \frac{\epsilon}{2}$, then $|x| < \epsilon$
- (b) Show that if $|x y| < \frac{\epsilon}{3}$ and $|y z| < \frac{\epsilon}{3}$ and $|z t| < \frac{\epsilon}{3}$, then $|x t| < \epsilon$

(c) Show if
$$|x-z| \le \frac{\epsilon}{2}$$
 and $|y-z| \ge \epsilon$, then $|y-x| \ge \frac{1}{2} |y-z|$.

Hint for (c): Start with |y - z| and write y - z in terms of y - x and x - z, and then use $\epsilon \le |y - z|$.

Additional Problem 3: Use the definition of sup and inf to find the following. Explain why your answer is correct.

- (a) sup(A) where $A = \left\{3 \frac{2}{n}, n \in \mathbb{N}\right\}$
- (b) $\inf(B)$ where $B = \{e^{-x}, x \in \mathbb{R}\}$
- (c) sup(C) where $C = \{n(-1)^n, n \in \mathbb{N}\}\$

Hint: Is C bounded above? Why or why not?

Additional Problem 4: Let A and B be nonempty bounded subsets of \mathbb{R} and let AB be the set of all products ab where $a \in A$ and $b \in B$. Is it always true that $\sup(AB) = \sup(A) \sup(B)$? Why or why not? **Optional Additional Problem 5** Prove that the set of algebraic numbers are countable, as follows. You may use (without proof) the fundamental theorem of algebra, which says that every polynomial of degree $n \ge 1$ with integer coefficients (not all 0) has at most n roots.

- (a) First, show that for **fixed** $n \ge 1$ and **fixed** integers a_n, \dots, a_1, a_0 (not al 0), the set of solutions to $a_n x^n + \dots + a_1 x + a_0 = 0$ is countable
- (b) Then show that for **fixed** n, the set of zeros of all polynomials of degree n with integer coefficients (not all 0) is countable
- (c) Finally show that the set of algebraic numbers are countable

Optional Additional Problem 6: Show that there is no order structure \leq on \mathbb{C} that agrees with the standard order structure \leq on \mathbb{R} .

Hint: Consider two cases: $i \ge 0$ and $i \le 0$.

Note: In fact, more is true! There is no order structure on \mathbb{C} at all! See this video if you're interested: Can you compare complex numbers?