MATH 409 - HOMEWORK 2

Readings: Sections 2, 3, and 4. Ignore the Rational Zeros Theorem in section 2 ; it's not very important for this class. No need to memorize the field/ordered field axioms in section 3, but know how to prove all the properties in that section. The Triangle Inequality is very important. Section 4 is very hard but the most important section in the book, make sure to understand every single detail in it. The Archimedean Property and the Denseness of \mathbb{Q} will be part of the next homework.

- Section 2: 4, AP1 (Optional: AP5)
- Section 3: 5, 6b, 8, AP2, AP3, (Optional: AP6)
- Section 4: 7, 8, 14, AP4

Hints: For 4 in section 2, just do it by contradiction; you may assume $\sqrt{3}$ is irrational. For 8 in section 3, do it by contradiction.

Additional Problem 1: Here is how to actually construct \mathbb{Q} : Let $A=\mathbb{Z} \times \mathbb{Z}^{\star}$ (where \mathbb{Z}^{\star} is the set of nonzero integers) and define a relation \sim on A by:

$$
(a, b) \sim(c, d) \Leftrightarrow a d=b c
$$

(a) Prove that \sim is an equivalence relation on A (see this link for a definition)
(b) Give three examples of elements in the equivalence class of $[(1,2)]$. This equivalence class is what we call $\frac{1}{2}$.

Additional Problem 2: Here are some applications of the triangle inequality in real (analysis) life.
(a) Show that if $|x-y|<\frac{\epsilon}{2}$ and $|y|<\frac{\epsilon}{2}$, then $|x|<\epsilon$
(b) Show that if $|x-y|<\frac{\epsilon}{3}$ and $|y-z|<\frac{\epsilon}{3}$ and $|z-t|<\frac{\epsilon}{3}$, then $|x-t|<\epsilon$
(c) Show if $|x-z| \leq \frac{\epsilon}{2}$ and $|y-z| \geq \epsilon$, then $|y-x| \geq \frac{1}{2}|y-z|$.

Hint for (c) : Start with $|y-z|$ and write $y-z$ in terms of $y-x$ and $x-z$, and then use $\epsilon \leq|y-z|$.

Additional Problem 3: Use the definition of sup and inf to find the following. Explain why your answer is correct.
(a) $\sup (A)$ where $A=\left\{3-\frac{2}{n}, n \in \mathbb{N}\right\}$
(b) $\inf (B)$ where $B=\left\{e^{-x}, x \in \mathbb{R}\right\}$
(c) $\sup (C)$ where $C=\left\{n(-1)^{n}, n \in \mathbb{N}\right\}$

Hint: Is C bounded above? Why or why not?
Additional Problem 4: Let A and B be nonempty bounded subsets of \mathbb{R} and let $A B$ be the set of all products $a b$ where $a \in A$ and $b \in B$. Is it always true that $\sup (A B)=\sup (A) \sup (B)$? Why or why not?

Optional Additional Problem 5 Prove that the set of algebraic numbers are countable, as follows. You may use (without proof) the fundamental theorem of algebra, which says that every polynomial of degree $n \geq 1$ with integer coefficients (not all 0) has at most n roots.
(a) First, show that for fixed $n \geq 1$ and fixed integers $a_{n}, \cdots, a_{1}, a_{0}$ (not al 0), the set of solutions to $a_{n} x^{n}+\cdots+a_{1} x+a_{0}=0$ is countable
(b) Then show that for fixed n, the set of zeros of all polynomials of degree n with integer coefficients (not all 0) is countable
(c) Finally show that the set of algebraic numbers are countable

Optional Additional Problem 6: Show that there is no order structure \leq on \mathbb{C} that agrees with the standard order structure \leq on \mathbb{R}.

Hint: Consider two cases: $i \geq 0$ and $i \leq 0$.
Note: In fact, more is true! There is no order structure on \mathbb{C} at all! See this video if you're interested: Can you compare complex numbers?

