## HOMEWORK 2 - AP SOLUTIONS

## AP 1:

(a) Reflexive: Do we have $(a, b) \sim(a, b)$ ? That is, do we have $a b=b a$ ? Yes.

Symmetric: Suppose $(a, b) \sim(c, d)$, then $a d=b c$. Do we have $(c, d) \sim(a, b)$ ? In other words, is $c b=d a$ ? Yes $\checkmark$

Transitive: Suppose $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$, then $a d=b c$ and $c f=e d$, do we have $(a, b) \sim(e, f)$, that is $a f=b e$ ?

Yes because $a d=b c \Rightarrow a=\frac{b c}{d}$ (remember $d \neq 0$ ), so

$$
a f=\left(\frac{b c}{d}\right) f=\frac{b c f}{d}=\frac{b e d}{d}=b e \checkmark
$$

Hence $\sim$ is an equivalence relation
(b) Notice that $(a, b) \sim(1,2)$ if and only if $a(2)=b(1) \Rightarrow b=2 a$, so examples are $(1,2)$ (which corresponds to $\frac{1}{2}$ ), $(2,4)$ (which corresponds to $\left.\frac{2}{4}=\frac{1}{2}\right),(3,6),(-1,-2)$, etc.

## AP 2:

(a)

$$
\begin{aligned}
|x| & =|x-y+y| \\
& \leq|x-y|+|y| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

(b)

$$
\begin{aligned}
|x-t| & =|x-y+y-z+z-t| \\
& \leq|x-y|+|y-z|+|z-t| \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3} \\
& =\epsilon
\end{aligned}
$$

(c)

$$
\begin{aligned}
|y-z| & =|y-x+x-z| \\
& \leq|y-x|+|x-z| \\
& <|y-x|+\frac{\epsilon}{2} \\
& <|y-x|+\frac{|y-z|}{2}
\end{aligned}
$$

Hence $|y-z| \leq|y-x|+\frac{1}{2}|y-z| \Rightarrow|y-x| \geq \frac{1}{2}|z-y|$.

AP 3:
(a) We claim that $\sup (A)=3$.

First of all, for all $n \in \mathbb{N}, 3-\frac{2}{n} \leq 3$, so 3 is an upper bound for $A$.

## Scratchwork:

$$
\begin{aligned}
3 & -\frac{2}{n}>M_{1} \\
\Rightarrow & -\frac{2}{n}>\left(M_{1}-3\right) \\
& \Rightarrow \frac{2}{n}<\left(3-M_{1}\right) \\
& \Rightarrow \frac{n}{2}>\frac{1}{3-M_{1}} \\
\Rightarrow & n>\frac{2}{3-M_{1}}
\end{aligned}
$$

Now if $M_{1}<3$, then if $n$ is any integer greater than $\frac{2}{3-M_{1}}>0$, then $s_{1}=: 3-\frac{2}{n}$ is an element of $A$ such that $s_{1}>M_{1} \checkmark$
(b) We claim that $\inf (B)=0$

First of all, for all $x \in \mathbb{R}, e^{-x}>0$, hence 0 is a lower bound for $B$.

Scratchwork: $e^{-x}<M_{1} \Rightarrow-x<\ln \left(M_{1}\right) \Rightarrow x>-\ln \left(M_{1}\right)$

If $M_{1}>0$, then if $x$ is any real number greater than $-\ln \left(M_{1}\right)$, then $s_{1}=: e^{-x}$ is an element of $B$ such that $s_{1}<M_{1} \checkmark$.
(c) I'm claiming that $\sup (C)=\infty$, that is $C$ is not bounded above. In fact for all $M$, if and $n$ is any even integer greater than $M$, then $n(-1)^{n}=n>M$, so there exists an element in $C$ that is $\geq M$. where $C=\left\{n(-1)^{n}, n \in \mathbb{N}\right\}$

AP 4: The statement is FALSE. Let $A=B=\{-1,0\}$, then $\sup (A)=$ $\sup (B)=0$, But $A B=\{0,1\}$ and hence $\sup (A B)=1$

There are other examples, such as $A=\{-1\}$ and $B=\{-1,1\}$
AP 5
(a) For fixed $n$ and fixed $a_{n}, \cdots, a_{1}, a_{0}$ (not all 0 ), $a_{n} x^{n}+\cdots+a_{1} x+$ $a_{0}$ has at most $n$ roots (by the fundamental theorem of algebra), which is finite, hence countable.
(b) For fixed $n$, we can write the set of zeros of all polynomials of degree $n$ with integer coefficients as the union over $\left(a_{n}, \cdots, a_{1}\right) \in$ $\mathbb{Z}^{\star} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ of the set in $(a)$. The set in (a) is countable (finite!) and moreover $\mathbb{Z}^{\star} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ is countable since the product of countable sets is countable. Therefore here we have a countable union of countable sets, which is countable
(c) The set of algebraic numbers is just the union over $n \in \mathbb{N}$ of the set in (b), hence we have a countable union of countable sets, which is countable

AP 6:

Case 1: $i \geq 0$, but then $i i \geq i 0$ (by (O5)), so $-1 \geq 0 \Rightarrow \Leftarrow$
Case 2: $i \leq 0$, but then $i i \geq i 0$, so $-1 \geq 0 \Rightarrow \Leftarrow$.

