HOMEWORK 2 – AP SOLUTIONS

AP 1:

(a) **Reflexive:** Do we have $(a, b) \sim (a, b)$? That is, do we have ab = ba? Yes.

Symmetric: Suppose $(a, b) \sim (c, d)$, then ad = bc. Do we have $(c, d) \sim (a, b)$? In other words, is cb = da? Yes \checkmark

Transitive: Suppose $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$, then ad = bc and cf = ed, do we have $(a, b) \sim (e, f)$, that is af = be?

Yes because $ad = bc \Rightarrow a = \frac{bc}{d}$ (remember $d \neq 0$), so

$$af = \left(\frac{bc}{d}\right)f = \frac{bcf}{d} = \frac{bed}{d} = be\checkmark$$

Hence \sim is an equivalence relation

(b) Notice that $(a, b) \sim (1, 2)$ if and only if $a(2) = b(1) \Rightarrow b = 2a$, so examples are (1, 2) (which corresponds to $\frac{1}{2}$), (2, 4) (which corresponds to $\frac{2}{4} = \frac{1}{2}$), (3, 6), (-1, -2), etc.

AP 2:

Date: Friday, September 10, 2021.

(a)

$$\begin{aligned} |x| &= |x - y + y| \\ &\leq |x - y| + |y| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon \end{aligned}$$

(b)

$$\begin{aligned} |x-t| &= |x-y+y-z+z-t| \\ &\leq |x-y|+|y-z|+|z-t| \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} \\ &= \epsilon \end{aligned}$$

(c) |y - z| = |y - x + x - z| $\leq |y - x| + |x - z|$ $< |y - x| + \frac{\epsilon}{2}$ $< |y - x| + \frac{|y - z|}{2}$ Hence $|u - z| \leq |u - x| + \frac{1}{2}|u - z| \Rightarrow |u - x| \geq \frac{1}{2}|z - u|$

Hence $|y - z| \le |y - x| + \frac{1}{2}|y - z| \Rightarrow |y - x| \ge \frac{1}{2}|z - y|.$

AP 3:

(a) We claim that $\sup(A) = 3$.

First of all, for all $n \in \mathbb{N}$, $3 - \frac{2}{n} \leq 3$, so 3 is an upper bound for A.

Scratchwork:

$$3 - \frac{2}{n} > M_1$$

$$\Rightarrow -\frac{2}{n} > (M_1 - 3)$$

$$\Rightarrow \frac{2}{n} < (3 - M_1)$$

$$\Rightarrow \frac{n}{2} > \frac{1}{3 - M_1}$$

$$\Rightarrow n > \frac{2}{3 - M_1}$$

Now if $M_1 < 3$, then if *n* is any integer greater than $\frac{2}{3-M_1} > 0$, then $s_1 =: 3 - \frac{2}{n}$ is an element of *A* such that $s_1 > M_1 \checkmark$

(b) We claim that $\inf(B) = 0$

First of all, for all $x \in \mathbb{R}$, $e^{-x} > 0$, hence 0 is a lower bound for B.

Scratchwork: $e^{-x} < M_1 \Rightarrow -x < \ln(M_1) \Rightarrow x > -\ln(M_1)$

If $M_1 > 0$, then if x is any real number greater than $-\ln(M_1)$, then $s_1 =: e^{-x}$ is an element of B such that $s_1 < M_1 \checkmark$.

(c) I'm claiming that $\sup(C) = \infty$, that is C is not bounded above. In fact for all M, if and n is any **even** integer greater than M, then $n(-1)^n = n > M$, so there exists an element in C that is $\ge M$. where $C = \{n(-1)^n, n \in \mathbb{N}\}$ **AP 4:** The statement is **FALSE**. Let $A = B = \{-1, 0\}$, then $\sup(A) = \sup(B) = 0$, But $AB = \{0, 1\}$ and hence $\sup(AB) = 1$

There are other examples, such as $A = \{-1\}$ and $B = \{-1, 1\}$

AP 5

- (a) For fixed n and fixed a_n, \dots, a_1, a_0 (not all 0), $a_n x^n + \dots + a_1 x + a_0$ has at most n roots (by the fundamental theorem of algebra), which is finite, hence countable.
- (b) For fixed n, we can write the set of zeros of all polynomials of degree n with integer coefficients as the union over $(a_n, \dots, a_1) \in \mathbb{Z}^* \times \mathbb{Z} \times \dots \times \mathbb{Z}$ of the set in (a). The set in (a) is countable (finite!) and moreover $\mathbb{Z}^* \times \mathbb{Z} \times \dots \times \mathbb{Z}$ is countable since the product of countable sets is countable. Therefore here we have a countable union of countable sets, which is countable
- (c) The set of algebraic numbers is just the union over $n \in \mathbb{N}$ of the set in (b), hence we have a countable union of countable sets, which is countable

AP 6:

Case 1: $i \ge 0$, but then $i \ge i \ge i$ (by (O5)), so $-1 \ge 0 \Rightarrow \Leftarrow$

Case 2: $i \leq 0$, but then $ii \geq i0$, so $-1 \geq 0 \Rightarrow \Leftarrow$.