HOMEWORK 2 - SELECTED BOOK SOLUTIONS

3.8: By contradiction, suppose $a \leq b_{1}$ for every $b_{1}>b$, but $a>b$.

Let $b_{1}=\frac{a+b}{2}>b$, then by assumption

$$
\begin{aligned}
& a \leq b_{1} \\
& a \leq \frac{a+b}{2} \\
& a \leq \frac{a}{2}+\frac{b}{2} \\
& a-\frac{a}{2} \leq \frac{b}{2} \\
& \frac{a}{2} \leq \frac{b}{2} \\
& a \leq b
\end{aligned}
$$

But this contradicts $a>b \Rightarrow \Leftarrow$.
4.14a Let $a \in A$ and $b \in B$ be arbitrary.

Then $a+b \in S=A+B$, so by definition of $\sup (S)$, we have $a+b \leq$ $\sup (S)$, so $a \leq \sup (S)-b$. Since a was arbitrary, the quantity $\sup (S)-b$ is an upper bound for A and so by definition of $\sup (A)$, we have $\sup (A) \leq \sup (S)-b$.

Therefore $b \leq \sup (S)-\sup (A)$. But since b is arbitrary, $\sup (S)-$ $\sup (A)$ is an upper bound for B and therefore by definition of $\sup (B)$,

[^0]we have $\sup (B) \leq \sup (S)-\sup (A)$, so $\sup (A)+\sup (B) \leq \sup (S)$.
On the other hand, if $s \in S$ is arbitrary, then $s=a+b$ where $a \in A$ and $b \in B$, but by definition $a \leq \sup (A)$ and $b \leq \sup (B)$, so $s=a+b \leq \sup (A)+\sup (B)$. But since s was arbitrary, we get $\sup (A)+\sup (B)$ is an upper bound for S, so $\sup (S) \leq \sup (A)+\sup (B)$ by definition of sup.

Therefore, $\sup (A+B)=\sup (S)=\sup (A)+\sup (B)$

[^0]: Date: Friday, September 10, 2021.

