MATH S4062 - HOMEWORK 2

- Chapter 7: 6, 15, 18

Please also do the additional problems below.
Additional Problem 1: Find an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\left|f^{\prime}(x)\right|<1$ for all x, but f has no fixed point. (I recommend playing around with exponential functions before looking at the hint)

Additional Problem 2: Show that the sequence f_{n} defined by

$$
f_{n}(x)=\cos (x+n)+\ln \left(1+\frac{\sin (n x)}{\sqrt{n+2}}\right)
$$

Is equicontinuous on $[0,2 \pi]$

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2}+n}{n^{2}}
$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.
\rightarrow does not converge absolutely for any value of x
$\forall x$, we have the absolute value of each term:

$$
\left|\frac{x^{2}+n}{n^{2}}\right| \geq \frac{n}{n^{2}}=\frac{1}{n}
$$

By Comparison Test, $\because \sum \frac{1}{n}$ divergent $\therefore \sum\left|\frac{x^{2}+n}{n^{2}}\right|$ divergent.
So It does wet converge absolutely for any calve of x
2) converges uniformly in every bounded interval.

Denoted $a_{n}=\frac{x^{2}+n}{n^{2}}=\frac{x^{2}}{n^{2}}+\frac{1}{n}$
then the series could be write as $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$

$$
\begin{aligned}
S_{n=} \sum_{i=1}^{n}(-1)^{i} a_{i}=-1 & +x^{2}\left(\frac{1}{4}-\frac{1}{3^{2}}+\frac{1}{4^{2}}-\frac{1}{5^{2}} \cdots\right) \\
& +\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5} \cdots\right) \\
=-1 & +x^{n} \sum_{i=2}^{n}(-1)^{i} \frac{1}{i^{2}}+\sum_{i=2}^{n}(-1)^{i} \frac{1}{i} \\
\text { note as }-1 & +x^{n} \cdot S_{b_{n}}+S_{C_{n}}
\end{aligned}
$$

$\left.\begin{array}{l}\text { CLAIM 1: } S_{C_{n}} \text { converges to } C \\ \text { CLAIM 2: } S_{b_{n}} \text { converges to } b\end{array}\right\} \Rightarrow$ Proved in next Page
Then $S_{n}=-1+x^{n} S_{b n}+S_{C_{n}} \longrightarrow f=-1+x^{n} b+c$
In any bounded interval $[a, b], \exists M$ s.t. $\left|x^{n}\right| \leqslant M$
$\forall \varepsilon>0 \quad \exists N_{1}>0$ S.t. $\left|S_{C_{n}}-c\right|<\frac{\varepsilon}{2}$ for all $n \geqslant N_{1}$. By claim 1 $\exists N_{2}>0$ s.t. $\left|S_{b_{n}}-b\right|<\frac{\varepsilon}{2 \mu}$ for all $n \geqslant N_{2}$ By claim 2 take $N=\max \left\{N_{1}, N_{2}\right\}$
then $\left|S_{n}-f\right| \leqslant x^{n}\left|S_{b n}-b\right|+\left|S_{C_{n}}-c\right| \leqslant \mu \frac{\varepsilon}{2 \mu}+\frac{\varepsilon}{2} \leqslant \varepsilon$ for all x and all $n \geqslant N$
which mean $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2}+n}{n^{2}}$ converges uniformly in every bounded interval, by hight light

Prove of CLATM 1:

$$
\begin{aligned}
S_{C_{n}} & =\sum_{i=2}^{n}(-1)^{i} \frac{1}{i} \quad \text { converges. } \\
& =\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5} \cdots \\
\text { Let } b_{n} & =\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)} \\
S_{C_{n}} & =\left\{\begin{array}{l}
b_{2}+b_{4}+\cdots+b_{2 k} \text { when } n=2 k+2 \quad k=0,1,2 \cdots \\
b_{2}+b_{4}+\cdots+b_{2 k-2}+\frac{1}{2 k} \quad \text { when } n=2 k+1
\end{array}\right. \\
b_{2}+b_{4}+\cdots+b_{2 k} \quad \frac{1}{2 \cdot 3}+\frac{1}{4 \cdot 5}+\cdots+\frac{1}{2 k(2 k+1)} & \leqslant \frac{1}{2^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{(2 k)^{2}} \\
& =\frac{1}{4}\left(1+\frac{1}{1^{2}}+\cdots+\frac{1}{k^{2}}\right)
\end{aligned}
$$

converges

So by comparison test $S_{\text {an }}$ converges when n is even.
Denoted: $S_{C n} \rightarrow C$ when n is even
then we claim $S_{c_{n}} \rightarrow C$ because these two parts converges

$$
\text { because } \begin{aligned}
\bigcup_{n \rightarrow \infty} S_{\text {en }}(\text { nod }) & =\lim _{n \rightarrow \infty}\left(b_{2}+b_{4}+\cdots+b_{2 k-2}\right)+\left(\frac{1}{2 k}\right) \downarrow \\
& =\varliminf_{k \rightarrow \infty}\left(b_{2}+b_{4}+\cdots+b_{2 k+2}\right)+\mathfrak{k}_{k \rightarrow \infty} \frac{1}{2 k} \\
& =C+0=c
\end{aligned}
$$

Thus $S_{\text {On }}$ converges. denote as $S_{C_{n}} \rightarrow C$ as $n \rightarrow \infty$ Prof of $C \mathcal{A Z M} 2$.

$$
S_{b_{n}}=\sum_{i=2}^{n}(-1)^{i} \frac{1}{i^{2}}
$$

$\left|(-1)^{i} \frac{1}{i^{2}}\right| \leqslant \frac{1}{i^{2}}$ while $\sum_{i=1}^{n} \frac{1}{i^{2}}$ converges. So, $S_{b_{n}}$ converges By comparison test, denote as $S_{b_{n}} \rightarrow b$ as $n \rightarrow \infty$
15. Suppose f is a real continuous function on $R^{1}, f_{n}(t)=f(n t)$ for $n=1,2,3, \ldots$, and $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$. What conclusion can you draw about f ?
f must be constant in R^{+}
(1) f_{n} equicontinuous $\Rightarrow f$ constant when $f \geqslant 0$

By assume to contrary, we assume exists $z_{1}, z_{2} \geqslant 0, z_{1} \neq z_{2}$ sit.

$$
f\left(z_{1}\right)=a \neq b=f\left(z_{2}\right)
$$

take $\varepsilon=\frac{1}{2}|a-b|$

$$
\begin{aligned}
& \varepsilon=\frac{1}{2}|a-b| \\
& \forall \delta>0 \quad \exists n \in \mathbb{N} \text { set. } \frac{\left|z_{1}-z_{2}\right|}{n}<\delta \quad \text { and }\left|\frac{z_{1}}{n}\right|<1,\left|\frac{z_{2}}{n}\right|<1
\end{aligned}
$$

take $x=\frac{z_{1}}{n}, y=\frac{z_{2}}{n}$, we have $|x-y|=\frac{1}{n}\left|z_{1}-z_{2}\right|<\delta$

$$
\text { But }\left|f_{n}(x)-f_{n}(y)\right|=\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|=|a-b|>\frac{1}{2}|a-b|=\varepsilon
$$

thus $\left\{f_{n}\right\}$ is not equicontinnous, leads to contradiction x
(2) f constant when $f \geqslant 0 \Rightarrow f_{n}$ equicontinuous

$$
\forall \varepsilon>0 \quad \exists \delta=\frac{1}{2}
$$

sit. $\forall|x-y|<\frac{1}{2}, x, y \in[0,1]$
$\forall n, \quad n x \geqslant 0, \quad n y \geqslant 0, \quad f(n x)=f(n y)$
$|f(n x)-f(n y)|=0<\varepsilon$, thus f_{n} equicontinuous.

In conclusion: f must be constant on $[0, \infty)$
18. Let $\left\{f_{n}\right\}$ be a uniformly bounded sequence of functions which are Riemann-integrable on $[a, b]$, and put

$$
F_{n}(x)=\int_{0} f_{n}(t) d t \quad(a \leq x \leq b) .
$$

Prove that there exists a subsequence $\left\{F_{n_{k}}\right\}$ which converges uniformly on $[a, b]$.
We only need to show that $F_{n}(x)$ is bounded, equicontinuous on $C[a, b]$

1) $F_{n}(x)$ is bounded

Because f_{n} is uniformly bounded, say $\left|f_{n}\right|<M$
then $F_{n}(x)=\int_{a}^{x} f_{n}(t) d t \leqslant \int_{a}^{x} \mu d t \leqslant \int_{a}^{b} \mu d t=\mu(a-b)$
So $F_{n}(x)$ is Bounded
2) $F_{n}(x)$ is equicontin mons

Because $\left\{f_{n}\right\}$ be Riemann-integrable on $[a, b]$
By FTC.

$$
\begin{aligned}
& \left(F_{n}(x)\right)^{\prime}=f(x) \\
& \forall \varepsilon>0 \quad \exists \delta=\frac{\varepsilon}{M} \\
& \forall x, y, \quad|x-y|<\delta, \quad \forall n \\
& \left|f_{n}\right|<M, \\
& \left|F_{n}(x)-F_{n}(y)\right|
\end{aligned}
$$

By the hightlight part, $F_{n}(x)$ is equicontinuovs, $F_{n}(x) \in c[a, b]$
By 1) 2) $F_{n}(x)$ is bounded, equicontinuous on $C[a, b]$,
By A-A Theorem, there exists a subsequence $\left\{F_{n}\right\}$ which converges uniformly on $[a, b]$, which ends tho pro of

Additional Problem 1: Find an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\left|f^{\prime}(x)\right|<1$ for all x, but f has no fixed point. (I recommend playing around with exponential functions before looking at the hint)
$\left.\right|^{\prime}(x) \mid=1$ But f is not a constraction
Otherwise if f is construction, \mathbb{R} is also complete then by Banach fixed point Theron, f has fixed point) we need $\sup \left|H^{\prime}(x)\right|=1$
notice $\frac{e^{x}}{e^{x}+1}<1$ but $\sup \left|\frac{e^{x}}{e^{x}+1}\right|=1$
then we could constract $f(x)$ by
taking $f(x)=\ln \left(e^{x}+1\right)$ then $f(x)=e^{x} \cdot \frac{1}{e^{x}+1}=\frac{e^{x}}{e^{x}+1}$

$$
\begin{aligned}
& f(x)=x \\
& x=\ln \left(e^{x}+1\right) \Leftrightarrow \quad e^{x}=e^{\ln \left(-e^{x}+1\right)} \Leftrightarrow e^{x}=e^{x}+1
\end{aligned}
$$

which is impossible
Formally:
$f(x)=\ln \left(e^{x}+1\right)$ is the function we want.

$$
f^{\prime}(x)=e^{x} \frac{1}{e^{x}+1}=\frac{e^{x}}{e^{x}+1}<\frac{e^{x}+1}{e^{x}+1}=1
$$

and if $f(x)$ has fixed point

$$
f(x)=x \Leftrightarrow x=\ln \left(e^{x}+1\right) \Leftrightarrow e^{x}=e^{x}+1 \Leftrightarrow 1=0 \quad x
$$

So $f(x)$ hasn't got fixed point

Additional Problem 2: Show that the sequence f_{n} defined by

$$
f_{n}(x)=\cos (x+n)+\ln \left(1+\frac{\sin (n x)}{\sqrt{n+2}}\right)
$$

Is equicontinuous on $[0,2 \pi]$
We only weed to show that $f_{n}(x)$ coverages uniformly in $[0,2 \pi]$

$$
\begin{aligned}
\forall n \quad\left|f_{n}(x)\right| & \leqslant 1+\ln \left(1+\frac{1}{\sqrt{n+2}}\right) \quad \ln (1+x)<x \\
& \leqslant 1+\frac{1}{\sqrt{n+2}} \longrightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

Then by [Weierstraß M-test], in $[0,2 \pi]$

$$
\left|f_{n}(x)\right| \leqslant 1+\frac{1}{\sqrt{n+2}} \text { where } 1+\frac{1}{\sqrt{n+2}} \rightarrow 1 \text { as } n \rightarrow \infty
$$

$f_{n}(x)$ coverages uniformly in $[0,2 \pi]$
thus, it is equicontinuous on $[0,2 \pi]$ as well.

