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MATH S4062 — HOMEWORK 2

e Chapter 7: 6, 15, 18
Please also do the additional problems below.

Additional Problem 1: Find an example of a function f : R — R
such that | f'(z)| < 1 for all z, but f has no fixed point. (I recommend
playing around with exponential functions before looking at the hint)

Additional Problem 2: Show that the sequence f, defined by

fa(x) = cos(z +n) +1n (1 i

Is equicontinuous on [0, 27]

Date: Due: Tuesday, July 12, 2022.
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15. Suppose f'is a real continuous function on R!, f,(t) = f(nt) for n=1, 2,3, ..., and
{2} is equicontinuous on [0, 1]. What conclusion can you draw about f?
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18. Let {f.} be a uniformly bounded sequence of functions which are Riemann-inte-
grable on [a, b], and put
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Prove that there exists a subsequence {F,.} which converges uniformly on |a‘ b].
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Additional Problem 1: Find an example of a function f : R — R
such that |f'(x)| < 1 for all z, but f has no fixed point. (I recommend
playing around with exponential functions before looking at the hint)
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Additional Problem 2: Show that the sequence f,, defined by

fo(x) = cos(z+n) +In (1 +

Is equicontinuous on [0, 27]
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