MATH S4062 - HOMEWORK 2

- Chapter 7: 6, 15, 18

Please also do the additional problems below.
Additional Problem 1: Find an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\left|f^{\prime}(x)\right|<1$ for all x, but f has no fixed point. (I recommend playing around with exponential functions before looking at the hint)

Additional Problem 2: Show that the sequence f_{n} defined by

$$
f_{n}(x)=\cos (x+n)+\ln \left(1+\frac{\sin (n x)}{\sqrt{n+2}}\right)
$$

Is equicontinuous on $[0,2 \pi]$

[^0]
Hints:

Problem 15: f must be constant on $[0, \infty)$. Suppose there are $x \neq y$ non-negative with $f(x) \neq f(y)$, let $\epsilon=|f(x)-f(y)|$, and go from there.

Additional Problem 1: Try out $f(x)=\ln \left(e^{x}+1\right)$ (thanks Peiyan for the suggestion!) or $f(x)=x+\frac{1}{e^{x}+1}$

Additional Problem 2: For the second function, use a theorem in lecture that gives a sufficient condition for equicontinuity. Also the inequality $\ln (1+x) \leq x$ might be useful.

[^0]: Date: Due: Tuesday, July 12, 2022.

