HOMEWORK 3 - SELECTED BOOK SOLUTIONS

4.16 Let $A=\{r \in \mathbb{Q} \mid r<a\}$. We claim that a is the least upper bound of A

Upper Bound: First of all, for all $r \in A, r<a$ (by definition) so A is bounded above by a

Least upper bound: Suppose $M_{1}<a$. Then by denseness of \mathbb{Q} there is a rational r such that $M_{1}<r<a$. But since in particular $r<a$, we have $r \in A$, and therefore r is an element of A that is $>M_{1} \checkmark$

Hence a is the least upper bound of A.
7.4a Let $x_{n}=\frac{\sqrt{2}}{n}$ which are irrational, because otherwise $n x_{n}=\sqrt{2}$ would be rational (being the product of two rational numbers), but $\lim _{n \rightarrow \infty} x_{n}=0$, which is rational
7.4b Let $x_{n}=\left(1+\frac{1}{n}\right)^{n}$, which is rational (being the product of rational numbers), but $\lim _{n \rightarrow \infty} x_{n}=e$, which is irrational.

Note: Another solution would be $x_{n}=\operatorname{expansion}$ of π up to the nth decimal place, like $x_{1}=3.1, x_{2}=3.14, x_{3}=3.141$ then each x_{n} is rational but x_{n} converges to π, which is irrational.

8.4

Scratchwork:

$$
\left|s_{n} t_{n}\right|=\left|s_{n}\right|\left|t_{n}\right| \leq\left|s_{n}\right| M<\epsilon \Rightarrow\left|s_{n}\right|<\frac{\epsilon}{M}
$$

Proof: Let $\epsilon>0$ be given. Since $s_{n} \rightarrow 0$ we know that there is an N such that for all n, if $n>N$, then $\left|s_{n}\right|<\frac{\epsilon}{M}$. With that same N, if $n>N$, we therefore get:

$$
\left|s_{n} t_{n}\right|=\left|s_{n}\right|\left|t_{n}\right| \leq\left|s_{n}\right| M<\left(\frac{\epsilon}{M}\right) M=\epsilon \checkmark
$$

8.5b In my opinion, this is easier to prove directly:

Let $\epsilon>0$ be given, then there is N such that if $n>N$, then $\left|t_{n}\right|=$ $t_{n}<\epsilon$. With that same N, if $n>N$, then

$$
\left|s_{n}\right| \leq t_{n}<\epsilon \checkmark
$$

8.7b Suppose $\lim _{n \rightarrow \infty} \sin \left(\frac{\pi n}{3}\right)=a$. Then for all $\epsilon>0$ there is N such that if $n>N$, then

$$
\left|\sin \left(\frac{\pi n}{3}\right)-a\right|<\epsilon
$$

But now let n be any integer $>N$ that is a multiple of 6 , then

$$
\left|\sin \left(\frac{\pi n}{3}\right)-a\right|=|-a|=|a|<\epsilon
$$

So $-\epsilon<a<\epsilon$
Similarly, let n be any integer $>N$ that is congruent to 1 modulo 6 , then

$$
\left|\sin \left(\frac{\pi n}{3}\right)-a\right|=\left|\frac{\sqrt{3}}{2}-a\right|=\left|a-\frac{1}{2}\right|<\epsilon
$$

So $-\epsilon<a-\frac{\sqrt{3}}{2}<\epsilon \Rightarrow \frac{\sqrt{3}}{2}-\epsilon<a<\frac{\sqrt{3}}{2}+\epsilon$.
Now choose $\epsilon>0$ such that $\epsilon \leq \frac{\sqrt{3}}{2}-\epsilon$, that is $\epsilon \leq \frac{\sqrt{3}}{4}$, then we get the contradiction:

$$
a<\epsilon \leq \frac{\sqrt{3}}{2}-\epsilon<a \Rightarrow a<a \Rightarrow \Leftarrow
$$

Hence $\lim _{n \rightarrow \infty} \sin \left(\frac{\pi n}{3}\right)$ doesn't exist.

8.8a

Scratchwork: Notice that

$$
\begin{aligned}
\left|\sqrt{n^{2}+1}-n-0\right| & =\left|\sqrt{n^{2}+1}-n\right| \\
& =\left|\left(\sqrt{n^{2}+1}-n\right)\left(\frac{\sqrt{n^{2}+1}+n}{\sqrt{n^{2}+1}+n}\right)\right| \\
& =\left|\frac{n^{2}+1-n^{2}}{\sqrt{n^{2}+1}+n}\right| \\
& =\left|\frac{1}{\sqrt{n^{2}+1}+n}\right| \\
& =\underbrace{\frac{1}{n^{2}+1}+n}_{\geq 0} \\
& <\frac{1}{n}<\epsilon
\end{aligned}
$$

Which implies $n>\frac{1}{\epsilon}$.
Proof: Let $\epsilon>0$ be given, and let $N=\frac{1}{\epsilon}$. Then if $n>N$, then we get

$$
\begin{aligned}
\left|\sqrt{n^{2}+1}-n-0\right| & =\left|\sqrt{n^{2}+1}-n\right| \\
& =\frac{1}{\left|\sqrt{n^{2}+1}+n\right|} \\
& =\frac{1}{\sqrt{n^{2}+1}+n} \\
& <\frac{1}{n} \\
& =\epsilon \checkmark
\end{aligned}
$$

8.9.a Let $\epsilon>0$ be arbitrary, then there is N such that if $n>N$, then $\left|s_{n}-s\right|<\epsilon$, where $s=\lim _{n} s_{n}$.

However:

$$
\left|s_{n}-s\right|<\epsilon \Rightarrow\left|s-s_{n}\right|<\epsilon \Rightarrow-\epsilon<s-s_{n}<\epsilon \Rightarrow s>s_{n}-\epsilon
$$

In particular, if you pick n such that $n>N$ and $s_{n} \geq a$ (which we can since there are only finitely many n such that $\left.s_{n}<a\right), s>s_{n}-\epsilon \geq a-\epsilon$, hence $s>a-\epsilon$.

Since ϵ was arbitrary, we ultimately get $s \geq a$.
Note: If you want to make that last step more elegant, suppose $s<a$ and choose ϵ such that $a-\epsilon>s$, that is $\epsilon<a-s$, then $s>a-\epsilon>s \Rightarrow s>s \Rightarrow \Leftarrow$.
8.10 Let $\epsilon>0$ be TBA, then since $\lim _{n \rightarrow \infty} s_{n}=s$, there is N such that if $n>N$, then $\left|s_{n}-s\right|<\epsilon$.

But

$$
\left|s_{n}-s\right|<\epsilon \Rightarrow-\epsilon<s_{n}-s<\epsilon \Rightarrow s-\epsilon<s_{n}<s+\epsilon
$$

In particular, we get $s_{n}>s-\epsilon$
Now choose ϵ such that $s-\epsilon \geq a$, that is $\epsilon \leq s-a$ (Which we can do since $s-a>0$ by assumption), then for $n>N$, we get

$$
s_{n}>s-\epsilon \geq a
$$

So $s_{n}>a$ for $n>N$

