MATH S4062 - HOMEWORK 3

- Chapter 7: 20
- Chapter 8: 1, 3

Please also do the additional problems below.
Additional Problem 1: Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0 \text { and } \lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x=f(1)
$$

Additional Problem 2: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous periodic function of period 2π such that for all integers $n \geq 0$, we have

$$
\int_{0}^{2 \pi} f(x) \sin (n x) d x=0 \text { and } \int_{0}^{2 \pi} f(x) \cos (n x) d x=0
$$

Show that f is identically zero (see hints)
20. If f is continuous on $[0,1]$ and if

$$
\int_{0}^{1} f(x) x^{n} d x=0 \quad(n=0,1,2, \ldots)
$$

prove that $f(x)=0$ on $[0,1]$. Hint: The integral of the product of f with any
polynomial is zero. Use the Weierstrass theorem to show that $\int_{n}^{1} f^{2}(x) d x=0$.
By Weierstrass theorem, f is continuous on $[0,1]$, there exists a sequence of polynomial $\left\{P_{n}\right\}$ which uniformly converges to f
Because $\int_{0}^{1} f(x) x^{n} d x=0$, for every $P_{n}, \quad \int_{0}^{1} f(x) P_{n}(x) d x=0$
And $\quad P_{n} \rightarrow f$ Uniformly, so

$$
\begin{aligned}
0 & ={\prod_{n \rightarrow \infty}^{1} 0}=\prod_{n \rightarrow \infty} \int_{0}^{1} f(x) P_{n}(x) d x \quad \int_{0}^{1} f(x) P_{n}(x) d x=0 \\
& =\int_{0}^{1} f(x){\underset{n}{n \rightarrow \infty}}_{L_{n}} P_{n}(x) d x \quad \text { Weierstrass Theorem } \\
& =\int_{0}^{1} f(x) f(x) d x \\
& =\int_{0}^{1}(f(x))^{2} d x
\end{aligned}
$$

thus $f(x)=0$ on $[0,1]$
note: otherwise if $\exists x_{0}$ sit. $f\left(x_{0}\right)=a \neq 0$
Because $f(x)$ is continuous
$\exists \delta>0$ s.t. $\forall x \in B_{\delta}\left(x_{0}\right)$, we have $f(x) \neq 0$
then $\int_{x_{0}-\delta}^{x_{0}+\delta}(f(x))^{2} d x$ strictly >0
notice that $\int_{0}^{x_{0}-\delta}(f(x))^{2} d x \geqslant 0 \quad \& \quad \int_{x+\gamma}^{1}(f(x))^{2} d x \geqslant 0$
we have $\int_{0}^{1}(f(x))^{2} d x>0, x$.

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & (x \neq 0) \\ 0 & (x=0)\end{cases}
$$

Prove that f has derivatives of all orders at $x=0$, and that $f^{(n)}(0)=0$ for $n=1,2,3, \ldots$
Prove by in auction:

1) Base case: $f^{\prime}(0)=0 \quad f^{\prime}(x)=2 x^{-3} e^{-\frac{1}{x^{2}}}=\frac{P_{0}(x)}{x^{3}} e^{-\frac{1}{x^{2}}}$

$$
\begin{aligned}
& \text { 1) Base case: } \frac{f(0)-f(0)}{f^{\prime}(0)=\operatorname{lix}_{x \rightarrow 0} \frac{f(x)}{x}} \begin{array}{l}
\lim _{x \rightarrow 0} \frac{e^{-\frac{1}{x^{2}}}}{x} \\
\text { (1) } \lim _{x \rightarrow 0^{+}} \frac{e^{-\frac{1}{x^{2}}}}{x}=0
\end{array}
\end{aligned}
$$

notice that

$$
0 \leqslant \frac{1}{x} \leqslant x \cdot \frac{1}{x^{2}} \cdot \frac{1}{1!} \leqslant x \cdot \sum_{i=0}^{\infty} \frac{1}{i!}\left(\frac{1}{x^{2}}\right)^{i}=x \cdot e^{\frac{1}{x^{2}}}
$$

thus $0 \leqslant \frac{1}{e^{\frac{1}{x^{2}}}} \leqslant x \cdot e^{\frac{i}{x^{2}}} \Rightarrow 0 \leqslant \frac{e^{\frac{1}{x^{2}}}}{x} \leqslant x \Rightarrow 0 \leqslant \lim _{x \rightarrow 0^{+}} \frac{e^{-\frac{1}{x^{2}}}}{x} \leqslant{\prod_{x \rightarrow 0^{+}} x=0}^{x}$

$$
\Rightarrow \lim _{x \rightarrow 0^{+}} \frac{e^{-\frac{1}{x}}}{x-\frac{1}{x}}=0
$$

(2) $\lim _{x \rightarrow 0^{-}} \frac{e^{-\frac{1}{x^{2}}}}{x}=0$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{e^{-\bar{x}}}{x}=0 \\
& 0 \geqslant \frac{1}{x} \geqslant x \frac{1}{x^{2}} \frac{1}{1!} \geqslant x \sum_{i=1}^{\infty} \frac{1}{i!}\left(\frac{1}{x^{2}}\right)^{i}=x \cdot e^{\frac{1}{x^{2}}}
\end{aligned}
$$

thus $0 \geqslant \frac{1}{x} \geqslant x \cdot e^{\frac{1}{x^{2}}} \Rightarrow 0 \geqslant \frac{e^{\frac{1}{x^{2}}}}{x} \geqslant x \Rightarrow 0 \geqslant \lim _{x \rightarrow 0^{-}} \frac{e^{-\frac{d}{x 2}}}{x} \geqslant \lim _{x \rightarrow 0^{-}} x=0$

$$
\Rightarrow \lim _{x \rightarrow 0^{-}} \frac{e^{-\frac{1}{x}}}{x}=0
$$

Combine (1) and (2) we have $\lim _{x \rightarrow 0^{+}} \frac{e^{-\frac{1}{x^{2}}}}{x}=\lim _{x \rightarrow 0^{-}} \frac{e^{-\frac{1}{x^{2}}}}{x}=0$
which means $f(0)$ exists and $f^{\prime}(0)=0$
Induction we assume $f^{(n)}(0)=0$ and $\left.f^{|n|} \mid x\right)=\frac{P_{2 n-2}(x)}{x^{3 n}} e^{-\frac{1}{x^{2}}}$
considering $t^{(n+1)}$

$$
\begin{aligned}
f^{(n+1)}(x) & =\frac{-3 n \cdot P_{n n 2}(x)}{x^{3 n+1}} e^{-\frac{1}{x^{2}}}-2 x^{-3} e^{-\frac{1}{x^{2}}} \cdot \frac{P_{n-2}(x)}{x^{3 n}} \\
& =e^{-\frac{1}{x^{2}}} \frac{-3 n x^{2} \ln _{n-2}(x)-2 P_{2 n-2}(x)}{x^{3(n+1)}} \\
& =e^{-\frac{1}{x^{2}}} \frac{P_{2 n}(x)}{x^{3(n+1)}}=\frac{P_{2(n+1)-2}(x)}{x^{3(n-1)}} e^{-\frac{1}{x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& f^{(n+1)}(0)=\varliminf_{x \rightarrow 0} \frac{f^{(n)}(x)-f^{(n)}(0)}{x} \\
& =\lim _{x \rightarrow 0} \frac{f^{(n)}(x)}{x}=\lim _{x \rightarrow 0} P_{2 n-2}(x) \frac{e^{-\frac{1}{x^{2}}}}{x^{3 n+1}} \stackrel{\text { note as }}{=}{\underset{x \rightarrow 0}{ }} A \cdot B \\
& C 1 A I M: \forall m \in \mathbb{N}_{-\frac{1}{x^{2}}}^{+}, \mu_{x \rightarrow 0} \frac{e^{-\overline{x^{2}}}}{x^{m}}=0 \\
& \text { (1) } \lim _{x \rightarrow 0^{+}} \frac{e^{-\overline{x^{2}}}}{x^{m}}=0 \\
& \text { proot: } \exists n \text { s.t. } 2 n-2 \leqslant m<2 n, 2 n-m>0 \\
& 0 \leqslant \frac{1}{x^{m}} \leqslant n!x^{2 n-m} \frac{1}{n!} \frac{1}{x^{2 n}} \\
& \leq n!x^{2 n-m} \sum_{i=1}^{\infty} \frac{1}{n!}\left(\frac{1}{x^{2}}\right)^{n} \\
& \Rightarrow 0 \leqslant \frac{e^{-\frac{1}{x^{2}}}}{x^{m}} \leqslant n!x^{2 n-m} \cdot e^{2 n-m} \text { for } \forall x \Rightarrow x_{x \rightarrow 0^{+}}^{e^{-\frac{1}{x^{2}}}} \frac{e^{-\frac{1}{x^{2}}}}{x^{m}}=0 \\
& \text { (2) } \lim _{x \rightarrow 0^{-}} \frac{e^{-\frac{1}{x}}}{x^{m}}=0 \\
& \exists \text { n s.t. } 2 n-2 \leq m<2 n, 2 n-m>0 \\
& \begin{aligned}
& \exists n \text { s.t. } 2 n-2 \leqslant m<2 n, 2 n-m>0 \\
& 0 \geqslant \frac{1}{x^{m}} \geqslant n!x^{2 n-m} \frac{1}{n!} \frac{1}{x^{2 n}} \geqslant n!x^{2 n-m} \cdot e^{\frac{1}{x^{2}}} \\
\Rightarrow & 0 \geqslant \frac{e^{-\frac{1}{x^{2}}}}{x^{m}} \geqslant n!x^{2 n-m} \text { for } \forall x \Rightarrow \lim _{x \rightarrow 0^{-}} \frac{e^{-\frac{1}{x^{2}}}}{x^{m}}=0
\end{aligned}
\end{aligned}
$$

with (1) (2), claim is poued
So

$$
\begin{aligned}
f^{(n+1)}(0) & =\lim _{x \rightarrow 0} \frac{f^{(n)}(x)-f^{(n)}(0)}{x} \\
& =\lim _{x \rightarrow 0} \frac{f^{(n)}(x)}{x}=\lim _{x \rightarrow 0} P 2 n-2(x) \frac{e^{-\frac{1}{x^{2}}}}{x^{3 n+1}} \stackrel{\text { noteas }}{=}{\underset{x \rightarrow 0}{ }} A \cdot B \\
\lim _{x \rightarrow 0} A & =0
\end{aligned}
$$

${\underset{x}{x \rightarrow 0} 0} B=\frac{e^{-\frac{1}{x^{2}}}}{x^{3 n+1}}=0$ by claim ahove, thus $f^{(n+1)}(0)=0$
3) Conclusion: $f(n)(0)=0$ for oll $n \in \mathbb{N}^{+}$.
3. Prove that

$$
\sum_{l} \sum_{J} a_{l j}=\sum_{J} \sum_{l} a_{l j}
$$

if $a_{l j} \geq 0$ for all i and j (the case $+\infty=+\infty$ may occur).
By Fubini for Series, we know that it $\sum_{i} \sum_{j} a_{i j}<\infty$
then $\sum_{i} \sum_{j} a_{i j}=\sum_{j} \sum_{j} a_{i j}$
CLALA : if $\sum_{i} \sum_{j} a_{i j}=+\infty$ then $\sum_{j} \sum_{i} a_{i j}=+\infty$
Assume to the contrary that $\sum_{T_{i}}^{\sum_{i}} a_{i j}=b<+\infty$
then by Fubini for Series, we have
$\sum_{i} \sum_{j} a_{i j}=b$ as well, contradicts with $\sum \sum_{j} a_{i j}=+\infty$ So the equation is proved no matter $\sum_{i} \bar{j} a_{i j}<\infty$ or $=+\infty$

Additional Problem 1: Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function.
Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0 \text { and } \lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x=f(1)
$$

$f:[0.1] \rightarrow R$ and f continuous, thus f is bounded.
let $|f(x)| \leq \mu$ for all x

$$
\begin{aligned}
&\left.\int_{0}^{1} \mid x^{n} f(x)\right) d x \leqslant \int_{0}^{1} x^{n} M d x \\
&=M \int_{0}^{1} x^{n} d x \\
&=M \cdot \frac{1}{n^{+1}}=\frac{m}{n+1} \\
& 0<\lim _{n \rightarrow \infty} \int_{0}^{1}\left|x^{n} f(x)\right| d x \leqslant M_{n \rightarrow \infty} \frac{m}{n+1}=0 \\
& \text { thus } \sum_{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \int_{\mathrm{n}}^{1} x^{n} f(x) d x=0 \text { and } \lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x=f(1)
$$

By Approximate Theorem, $\exists\left\{P_{m}\right\}$ Poly s.t. $P_{m} \rightarrow f$ uniformly. And for each $P_{m}(x)$, we have following:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}^{n} \int_{0}^{1} x^{n} P_{m}(x) d x \\
& =\varliminf_{n \rightarrow \infty} n \int_{0}^{1} x^{n}\left(a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}\right) d x \\
& =\lim _{n \rightarrow \infty} n \cdot\left(\frac{a_{m}}{n+m+1}+\frac{a_{m-1}}{n+m}+\cdots+\frac{a_{0}}{n+1}\right) \\
& =a_{m} \prod_{n \rightarrow \infty}\left(\frac{n}{n+m+1}\right)+a_{m-1} \sum_{n-\infty}^{1}\left(\frac{n}{n+m}\right)+\cdots+a_{0} \prod_{n \rightarrow \infty}\left(\frac{n}{n+1}\right) \\
& =a_{m}+a_{m-1}+\cdots+a_{0}=P_{m}(1)
\end{aligned}
$$

Thus: ${\underset{n}{n \rightarrow \infty}} n \int_{0}^{1} x^{n} f(x) d x$

$$
=\lim _{m \rightarrow \infty} \operatorname{Pm}(1)
$$

(1): $\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f_{n}(x) d x$

$$
=f(1)
$$

$$
\begin{aligned}
& =\varliminf_{n \rightarrow \infty} \lim _{m \rightarrow \infty} n \int_{0}^{1} x^{n} P_{m}(x) d x \sum_{\text {and }}^{\sum_{m \rightarrow \infty}} n \int_{0}^{1} x^{n} P_{m}(x) d x<\infty \text { (1) }
\end{aligned}
$$

Additional Problem 2: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous periodic function of period 2π such that for all integers $n \geq 0$, we have

$$
\int_{0}^{2 \pi} f(x) \sin (n x) d x=0 \text { and } \int_{0}^{2 \pi} f(x) \cos (n x) d x=0
$$

Show that f is identically zero (see hints)

$$
\begin{aligned}
& \text { Show that } t \text { is identically zero (see hints) } \\
& F_{\text {or }} P_{(x)}=\sum_{k=0}^{m_{k}} a_{k} \cos (k x)+b_{k} \sin (k x)
\end{aligned}
$$

$\int_{0}^{21} P_{(x)} \sin (n x) d x$ (1)
$=\int_{0}^{2 \pi}\left(\sum_{k=0}^{m} a_{k} \cos (k x)+b_{k} \sin (k x)\right) \sin (n x) d x$

$$
=\int_{0}^{\pi \pi} b_{n} \sin ^{2}(n x) d x=b_{n} \int_{n}^{2 \pi} \sin ^{2}(n x) d x=0
$$

$$
\text { for every } n, \int_{0}^{2 \pi} \sin ^{2}(n x) d x=\pi \text { when } n \neq 0
$$

thus $b_{n}=0$ for every $n=1,2, \cdots, m$.
\qquad
$\sum_{k=0}^{n} a_{k} \cos (k x)+b_{k} \sin (k x)$
(Where $b_{0}=0$). You're allowed to use without proof that
$\int_{0}^{2 \pi} \cos (m x) \cos (n x) d x=0$ if $m \neq n$
$\int_{0}^{2 \pi} \sin (m x) \sin (n x) d x=0$ if $m \neq n$
$\int_{0}^{2 \pi} \cos (m x) \sin (n x) d x=0$ for all m, n
Similarly $\begin{aligned} & \text { Then you can use without proof the fact that trigonometric polynomi- } \\ & \text { ass are dense in the space of continuous periodic functions of period } 2 \pi\end{aligned}$
$\int_{0}^{2 \pi} f_{n} \cos (n x) d x$ (2)
$=\int_{0}^{2 \pi} a_{n} \cos ^{2}(n x) d x=a_{n} \int_{0}^{2 \pi} \cos ^{2}(n x) d x=0$
$\int_{0}^{2 \pi} \cos ^{2}(n x) d x \left\lvert\, \begin{aligned} & =\pi \text { when } n \neq 0 \\ & =2 \pi \text { when } n=0\end{aligned}\right.$
thus $a_{n}=0$ for every $n=1,2, \cdots m$

Thus for $P(x)=\sum_{k=0}^{m} a_{k} \cos (k x)+b_{k} \sin (k x)$

$$
\int_{0}^{\pi \pi} P(x) \sin (n x) d x=0 \& \int_{0}^{2 \pi} P(x) \cos (n x) d x=0 \Rightarrow P(x)=0
$$

By Stone - Weierstrass Theorem,
$\forall f \exists\left\{P_{n}\right]$, every P_{i} is trigonometric poly, and $P_{n} \rightarrow f$ Uniformly by sup norm.
Denote above p_{n} as:

$$
P_{n}(x)=\sum_{k=0}^{m_{n}} a_{n, k} \cos (k x)+b_{n, k} \sin (k x)
$$

$$
\begin{align*}
& \forall R \in \mathbb{N}^{+} \text {, } \\
& O=\int_{0}^{2 \pi} f(x) \sin (k x) d x=\int_{0}^{2 \pi} \operatorname{him}_{n \rightarrow \infty} P_{n}(x) \sin (k x) d x \text {) Uniformly converges } \\
& =\prod_{n \rightarrow \infty} \int_{0}^{2 \pi} P_{n}(x) \sin (k x) d x=\left.\lim _{n \rightarrow \infty}\right|_{n, k} \pi \tag{1}\\
& 0=\int_{0}^{2 \pi} f(x) \cos (k x) d x=\int_{0}^{2 \pi} \operatorname{him}_{n \rightarrow \infty} p_{n}(x) \sin (k x) d x \\
& =\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} P_{n}(x) \sin (k x) d x=\operatorname{\mu im}_{n \rightarrow \infty} a_{n}, k \pi \\
& \text { by (2) }
\end{align*}
$$

$\Rightarrow \forall k>0 \quad \varliminf_{n \rightarrow \infty}^{\prime} Q_{n, k}=0$

$$
=\sum_{k=0}^{\infty} 0 \cdot \cos (k, x)+0 \cdot \sin (k x)
$$

$=0$, which ends the prot

