P62801 (Uni) Peiyon Li

MATH S4062 - HOMEWORK 3

- Chapter 7: 20
- Chapter 8: 1, 3

Please **also** do the additional problems below.

Additional Problem 1: Let $f : [0,1] \to \mathbb{R}$ be a continuous function. Show that

$$\lim_{n \to \infty} \int_0^1 x^n f(x) dx = 0 \text{ and } \lim_{n \to \infty} n \int_0^1 x^n f(x) dx = f(1)$$

Additional Problem 2: Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous periodic function of period 2π such that for all integers $n \ge 0$, we have

$$\int_{0}^{2\pi} f(x)\sin(nx)dx = 0 \text{ and } \int_{0}^{2\pi} f(x)\cos(nx)dx = 0$$

Show that f is identically zero (see hints)

Date: Due: Friday, July 15, 2022.

20. If f is continuous on [0, 1] and if

$$\int_0^1 f(x)x^n \, dx = 0 \qquad (n = 0, 1, 2, \ldots),$$

prove that f(x) = 0 on [0, 1]. *Hint*: The integral of the product of f with any polynomial is zero. Use the Weierstrass theorem to show that $\int_0^1 f^2(x) dx = 0$.

By Weierstrass theorem, f is continuous on [0,1], there exists a sequence of
polynomial (Pn] which uniformly converges to f
Because
$$\int_{0}^{1} f(x) \chi^{n} dx = 0$$
, for every Pn, $\int_{0}^{1} f(x) Pn(x) dx = 0$
And $Pn \rightarrow f$ Uniformly, So
 $0 = \Lambda_{n \rightarrow 0}^{-1} 0$] $\int_{0}^{1} f(x) Pn(x) dx = 0$
 $= \Lambda_{n \rightarrow 0}^{-1} \int_{0}^{1} f(x) Pn(x) dx$] Uniformly converges
 $= \int_{0}^{1} f(x) f(x) dx$] $f(x) = 0$ on [0,1]
Note: otherwise if $= \chi_{0}$ s.t. $f(x_{0}) = a \neq 0$
Because $f(x)$ is continuous
 $= \delta \ge 0$ s.t. $\forall x \in B_{\delta}(x_{0})$, we have $f(x) \neq 0$
then $\int_{x_{0}-\delta}^{x+\delta} (f(x))^{2} dx$ strictly ≥ 0
notice that $\int_{0}^{x-\delta} (f(x))^{2} dx \ge 0$ & $\int_{x+\delta}^{1} (f(x))^{2} dx \ge 0$
we have $\int_{0}^{1} (f(x))^{2} dx \ge 0$, $\xrightarrow{}$.

1. Define

$$f(x) = \begin{cases} e^{-1/x^2} & (x \neq 0), \\ 0 & (x = 0). \end{cases}$$

Prove that f has derivatives of all orders at x = 0, and that $f^{(n)}(0) = 0$ for $n = 1, 2, 3, \dots$ Prove by in outtion: The by in duction: Phase case: f(0) = 0 $f'(y) = 2 \frac{1}{x^2} \frac{e^{-\frac{1}{x^2}}}{x^2} = \frac{P_0(x)}{x^3} \frac{e^{-\frac{1}{x^2}}}{x^3}$ $f'(0) = \frac{1}{x^{-\frac{1}{x^2}}} \frac{f(0)}{x} = \frac{1}{x^{-\frac{1}{x^2}}} \frac{f(x)}{x}$ $f(0) = \frac{1}{x^{-\frac{1}{x^2}}} \frac{e^{-\frac{1}{x^2}}}{x} = \frac{1}{x^{-\frac{1}{x^2}}} \frac{e^{-\frac{1}{x^2}}}{x}$ $0 \xrightarrow{h} e^{h} = 0$ Nothice that $0 \le \frac{1}{x} \le x \cdot \frac{1}{x^2} \cdot \frac{1}{1!} \le x \cdot \frac{\infty}{1=0} \frac{1}{1!} (\frac{1}{x^2})^2 = x \cdot e^{\frac{1}{x^2}}$ thus $0 \le \frac{1}{x} \le x \cdot e^{\frac{1}{x^2}} \Rightarrow 0 \le \frac{e^{\frac{1}{x^2}}}{x} \le x \Rightarrow 0 \le \frac{1}{x \to 0} \frac{e^{\frac{1}{x^2}}}{x} \le \frac{1}{x \to 0} x = 0$ $\Rightarrow \bigwedge_{x \to 0^{\dagger}} \frac{\overline{e^x}}{\overline{v}} = 0$ $\bigcup_{x \to 0^-} \frac{\overline{\rho}^{\overline{x}}}{x} = 0$ $\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ $\Rightarrow \underbrace{e^{\frac{1}{x}}}_{x \to 0^{-}} = 0$ Combine () and () we have $\underbrace{h}_{x \to 0^{+}} = \underbrace{e^{\frac{1}{x}}}_{x \to 0^{+}} = \underbrace{h}_{x \to 0^{+}} = \underbrace{e^{\frac{1}{x}}}_{x \to 0^{+}} = 0$ which means $f(r_0)$ exists and $f(r_0) = 0$ and $f(r_1) = \frac{P_{2n,2}(x)}{X^{3n}} e^{-\frac{1}{x^2}}$ Considering + (n+1) $f^{(nTI)}(x) = -\frac{3n \cdot Bn_2(x)}{\sqrt{3}n + 1} e^{-\frac{1}{x^2}} - 2x^3 e^{-\frac{1}{x^2}} \frac{Bn_2(x)}{\sqrt{3}n + 1}$ $= e^{-\frac{1}{X^{2}}} \frac{-3n x^{2} b_{n2}(x) - 2 b_{n-2}(x)}{x^{3(n+1)}}$ = $e^{-\frac{1}{X^{2}}} \frac{\frac{1}{2n} (x)}{x^{3(n+1)}} = \frac{\frac{1}{2n} b_{n-2}(x)}{x^{3(n+1)} e^{-\frac{1}{X^{2}}}}$

3. Prove that

$$\sum_{i}\sum_{j}a_{ij}=\sum_{j}\sum_{i}a_{ij}$$

if $a_{ij} \ge 0$ for all *i* and *j* (the case $+\infty = +\infty$ may occur).

Additional Problem 1: Let $f : [0,1] \to \mathbb{R}$ be a continuous function. Show that

$$\lim_{n \to \infty} \int_{0}^{1} x^{n} f(x) dx = 0 \text{ and } \lim_{n \to \infty} n \int_{0}^{1} x^{n} f(x) dx = f(1)$$

f: [0,] \Rightarrow R and f continuous, thus f is bounded.
let $(f(x)) \leq M$ for all \propto
 $\int_{0}^{1} / x^{n} f(x) / dx \leq \int_{0}^{1} x^{n} M dx$
 $= M \int_{0}^{1} x^{n} dx$
 $= M \cdot \frac{1}{n+1} = \frac{m}{n+1}$
 $0 < n \rightarrow \infty \int_{0}^{1} / x^{n} f(x) / dx \leq n \rightarrow \infty = 0$
thus $\lim_{n \to \infty} \int_{0}^{1} x^{n} f(x) dx = 0$

Additional Problem 1: Let $f : [0,1] \to \mathbb{R}$ be a continuous function. Show that

$$\lim_{m \to \infty} \int_{0}^{1} x^{n} f(x) dx = 0 \text{ and } \lim_{m \to \infty} n \int_{0}^{1} x^{n} f(x) dx = f(0)$$
By Approximate Theorem, $\exists f Pn] Poly s.t. $Pn \rightarrow f$ Uniformly.
And for each $Pm(x)$. we have following:

$$= \int_{n \to \infty}^{\infty} n \int_{0}^{1} \chi^{n} (an \chi^{m} + a_{n+1} \chi^{n+1} + \cdots + l_{0}) dx$$

$$= \int_{n \to \infty}^{\infty} n \int_{0}^{1} \chi^{n} (an \chi^{m} + a_{n+2} \chi^{n+1} + \cdots + l_{0}) dx$$

$$= \int_{n \to \infty}^{\infty} n \cdot \left(\frac{am}{n+n+1} + \frac{am}{n+m} + \cdots + \frac{a_{0}}{n+1}\right)$$

$$= am \int_{n \to \infty}^{1} \left(\frac{n}{n+n+1}\right) + am_{1} \int_{n \to \infty}^{1} \left(\frac{n}{n+n}\right) + \cdots + l_{0} \int_{n \to \infty}^{\infty} \left(\frac{n}{n+1}\right)$$

$$= am \int_{n \to \infty}^{1} \left(\frac{n}{n+1} + 1\right) + am_{1} \int_{n \to \infty}^{1} \left(\frac{n}{n+n}\right) + \cdots + l_{0} \int_{n \to \infty}^{1} \left(\frac{n}{n+1}\right)$$

$$= an t am_{1} + \cdots + a_{0} = Pm(1)$$
Thus: $\int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(x) dx$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(x) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(x) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(x) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$

$$= \int_{n \to \infty}^{1} n \int_{0}^{1} \chi^{n} f(n) dx$$$

Additional Problem 2: Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous periodic function of period 2π such that for all integers $n \ge 0$, we have

 $\sum a_k \cos(kx) + b_k \sin(kx)$ $\int_{0}^{2\pi} f(x)\sin(nx)dx = 0 \text{ and } \int_{0}^{2\pi} f(x)\cos(nx)dx = 0$ (Where $b_0 = 0$). You're allowed to use without proof that $\cos(mx)\cos(nx)dx = 0$ if $m \neq n$ Show that f is identically zero (see hints) $\sin(mx)\sin(nx)dx = 0$ if $m \neq n$ $\overline{For} P(x) = \sum_{k=0}^{m} (k \cos(kx) + b \kappa \sin(kx))$ $\cos(mx)\sin(nx)dx = 0$ for all m, rThen you can use without proof the fact that trigonometric polynomials are dense in the space of continuous periodic functions of period 2π with the sup norm. (this follows from the Stone WeierstraßTheorem). Prosin(nx) dx = $\int_{0}^{2\eta} \left(\sum_{k=0}^{M} Q_{k} \cos (kx) + b_{k} \sin (kx) \right) \sin (nx) dx$ 12Th Pro cos (nx) dx (2) $= \int_{0}^{2\pi} b_{n} \sin^{2}(nx) dx = b_{n} \int_{0}^{2\pi} \sin^{2}(nx) dx = 0$ $= \int_{0}^{2\pi} (\ln \cos^{2}(nx)) dx = 0 \int_{0}^{2\pi} \cos^{2}(nx) dx = 0$ $\int_{0}^{2\pi} \cos^{2}(nx) dx = \tau \text{ When } n \neq 0$ $= 2\tau \text{ When } n = 0$ for even n. $\int_{-\infty}^{2\pi} \sin^2(n \times) dx = \Pi$, when $n \neq 0$ thus by=0 for every n=1,2,...,m. thus an=o for every n=1,2, -- m Thus for P(x) = = Qecos(kx) + besin(kx) $\int_{0}^{2\pi} P(x) \sin(nx) dx = 0 \& \int_{0}^{2\pi} P(x) \cos(nx) dx = 0 \implies P(x) = 0$ By Stone - Welorstrass Theorem, Vf = 1Pn], every Pi is trigonometric poly, and Pn→f Uniformly by sup norm. Denote above Pn as : PARJ= Ronk cos(Kx)+ Dn, ksin(kx) VREM+ 0= 50 finisin (kx) dx = Jon him Pa (x) sin (kx) dx) Uniformly converges = 12 Jot Prix sintex dx = 12 Prix Dr. K TL $0 = \int_{0}^{2\pi} f(x) \cos(kx) dx = \int_{0}^{2\pi} h_{x} P_{n}(x) \sin(kx) dx$ $= \int_{n \to \infty}^{2\pi} \int_{0}^{2\pi} P_n(x) \sin(kx) dx = \int_{n \to \infty}^{1} \int_{0}^{2\pi} P_n(x) \sin(kx) dx = \int_{0}^{1} \int_{0}^{2\pi} P_n(x) \sin(kx) dx = \int_{0}^{2\pi}$ =) $\forall k > 0$ h = 0 $\ln_{k} = 0$ thus f(x) = h = h = 0 $\ln_{k} = 0$ $\ln_{k} \cos(kx) + h = 0$ $\ln_{k} \sin(kx)$ $= \underset{(k,x)}{\overset{(k,x)}{=}} 0 \cdot \cos(kx) + 0 \cdot \sin(kx)$ = 0, which ends the pust *

Additional Problem 2: First show it's true for trigonometric polynomials, that is polynomials of the form