MATH 409 - HOMEWORK 4

Readings: Sections 9 and 10. Everything in section 9 is important, and you're responsible for knowing all the proofs in that section. In Section 10, for now just focus on the Monotone Sequence Theorem, and ignore the section on decimal expansions.

- Section 9: 9(a)(b), 11(c), 12, 15, AP1, AP2
- Section 10: 8, AP3, AP4, AP5, AP6

Note: There are some hints on the last page of the assignment
Additional Problem 1: Show directly (using the definition of a limit) that if $a>1$, then

$$
\lim _{n \rightarrow \infty} a^{n}=\infty
$$

Additional Problem 2: Suppose $\lim _{n \rightarrow \infty} s_{n}=\infty$ and $\left(t_{n}\right)$ be a sequence of positive numbers that is bounded above. Show directly (using the definition of a limit) that $\lim _{n \rightarrow \infty} \frac{s_{n}}{t_{n}}=\infty$

Additional Problem 3: Define $\left(s_{n}\right)$ by $s_{1}=1$ and

$$
s_{n+1}=\sqrt{s_{n}+1}
$$

Show that $\left(s_{n}\right)$ converges and find its limit.
Additional Problem 4: Define $\left(t_{n}\right)$ by $t_{1}=1$ and

$$
t_{n+1}=\left(\frac{n}{n+2}\right) t_{n}
$$

Show that $\left(t_{n}\right)$ converges.
Additional Problem 5: Prove directly that if $\left(s_{n}\right)$ is decreasing and bounded below, then $\left(s_{n}\right)$ converges. Do not use the fact that $-s_{n}$ is increasing.

Additional Problem 6: Babylonian square root

In this problem, we will calculate square roots the way that Babylonians did it, without any calculators!
(a) Let $a>0$ and $b>\sqrt{a}$ be given. Define a sequence $\left(s_{n}\right)$ by $s_{1}=b$ and

$$
s_{n+1}=\frac{1}{2}\left(s_{n}+\frac{a}{s_{n}}\right)
$$

Show that $\left(s_{n}\right)$ is a decreasing sequence that converges to \sqrt{a}.
(b) The above sequence is an excellent way to approximate square roots. To illustrate, let $a=2$ and $b=2$ and calculate s_{2}, s_{3}, s_{4} (please use approximate values). Compare with the actual answer $\sqrt{2} \approx 1.4142$

Some Hints:

9.12(a): To find N, use the result of problem 10 in section 8 . To show $\left|s_{n}\right|<a^{n-N}\left|s_{N}\right|$, write

$$
\left|s_{n}\right|=\frac{\left|s_{n}\right|\left|\frac{\left|s_{n-1}\right|}{\left|s_{n-1}\right|}\right| \frac{\left|s_{n-2}\right|}{} \frac{\left|s_{N+1}\right|}{\left|s_{N}\right|}\left|s_{N}\right|}{\text { n }}
$$

9.15: Use problem 12.
10.8: Calculate $\sigma_{n+1}-\sigma_{n}$. At some point, it's useful to write $n s_{n+1}$ as $s_{n+1}+s_{n+1}+\cdots+s_{n+1}(n$ times $)$

AP1: Write $a^{n}=(1+b)^{n}$ for $b=a-1>0$ and use the binomial theorem. This is similar to the proof of Example 8 in lecture, except that here the limit is ∞.

AP3: Show by induction that $\left(s_{n}\right)$ is increasing and $s_{n} \leq 2$ for all n
AP4: Note $t_{n} \geq 0$
AP5: Mimic the proof of the Monotone Sequence Theorem (Thm 10.2)
AP6a: First show by induction that $s_{n} \geq \sqrt{a}$ for all n. In the inductive step consider $s_{n+1}-\sqrt{a}$ and moreover notice that

$$
s_{n}-2 \sqrt{a}+\frac{a}{s_{n}}=\left(\sqrt{s_{n}}\right)^{2}-2\left(\sqrt{s_{n}}\right)\left(\sqrt{\frac{a}{s_{n}}}\right)+\left(\sqrt{\frac{a}{s_{n}}}\right)^{2}
$$

Then show that $s_{n+1} \leq s_{n}$. For this no induction is needed, you can do it directly by calculating $s_{n+1}-s_{n}$

