HOMEWORK 4 – AP SOLUTIONS

AP 1:

STEP 1: Scratch Work

Since a > 1, we can write a = (1 + b) for b = a - 1 > 0, but then

$$a^{n} = (1+b)^{n}$$

=1ⁿ + n1ⁿ⁻¹b + Positive Junk
=1 + nb + Positive Junk
>nb
>M

Which gives $nb > M \Rightarrow n > \frac{M}{b}$, which suggests to use $N = \frac{M}{b}$.

STEP 2: Actual Proof.

Let M > 0 be given and let $N = \frac{M}{b}$, then if n > N, we have

$$a^n > nb > \left(\frac{M}{b}\right)b = M\checkmark$$

Hence $\lim_{n\to\infty} a^n = \infty$.

AP 2:

STEP 1: Scratch Work

Date: Friday, September 24, 2021.

Since (t_n) is bounded above, we have $|t_n| = t_n \leq C$ for some C > 0 and hence

$$\frac{s_n}{t_n} \ge \frac{s_n}{C} > M$$

Which gives $s_n > CM$.

STEP 2: Actual Proof

Let M > 0 be given.

Since (t_n) is bounded above, we know there is C > 0 such that for all $n, |t_n| = t_n \leq C$

Now since $s_n \to \infty$, there is N such that if n > N, then $s_n > MC$

Now for the same N, if n > N, then we have

$$\frac{s_n}{t_n} \ge \frac{s_n}{C} > \frac{MC}{C} = M\checkmark$$

Therefore $\lim_{n\to\infty} \frac{s_n}{t_n} = \infty$

AP 3

Claim 1: $s_n \leq 2$ for all n

Proof: Let P_n be the proposition " $s_n \leq 2$ "

Base Case: $s_1 = 1 \le 2\checkmark$

Inductive Step: Suppose P_n is true, that is $s_n \leq 2$, show P_{n+1} is true, that is $s_{n+1} \leq 2$. But then, we get:

$$s_{n+1} = \sqrt{s_n + 1} \le \sqrt{2 + 1} = \sqrt{3} \le \sqrt{4} = 2$$

Hence P_{n+1} is true, so P_n is true for all n, that is $s_n \leq 2$ for all $n \checkmark$

Claim 2: (s_n) is increasing

Proof: Let P_n be the proposition $s_{n+1} > s_n$

Base Case: $s_2 = \sqrt{s_1 + 1} = \sqrt{1 + 1} = \sqrt{2} > 1 = s_1 \checkmark$

Inductive Step: Suppose P_n is true, that is $s_{n+1} > s_n$. Show P_{n+1} is true, that is $s_{n+2} > s_{n+1}$. But:

$$s_{n+2} - s_{n+1} = \sqrt{s_{n+1} + 1} - \sqrt{s_n + 1}$$

$$= \left(\sqrt{s_{n+1} + 1} - \sqrt{s_n + 1}\right) \left(\frac{\sqrt{s_{n+1} + 1} + \sqrt{s_n + 1}}{\sqrt{s_{n+1} + 1} + \sqrt{s_n + 1}}\right)$$

$$= \frac{\left(\sqrt{s_{n+1} + 1}\right)^2 - \left(\sqrt{s_n + 1}\right)^2}{\sqrt{s_{n+1} + 1} + \sqrt{s_n + 1}}$$

$$= \frac{s_{n+1} - s_n - 1}{\sqrt{s_{n+1} + 1} + \sqrt{s_n + 1}}$$

$$= \frac{s_{n+1} - s_n}{\sqrt{s_{n+1} + 1} + \sqrt{s_n + 1}}$$

But by the inductive hypothesis, $s_{n+1} - s_n > 0$, and the denominator is positive as well, and so $s_{n+2} - s_{n+1} > 0$, that is $s_{n+2} > s_{n+1}$. Therefore P_{n+1} is true, and hence P_n is true for all n, that is $s_{n+1} > s_n$ for all $n \checkmark$

Therefore since (s_n) is increasing and bounded above (by 2), by the Monotone Sequence Theorem, (s_n) converges to s.

Passing to the limit in the identity $s_{n+1} = \sqrt{s_n + 1}$ we get:

$$s = \sqrt{s+1}$$

$$s^{2} = s+1$$

$$s^{2} - s - 1 = 0$$

$$s = \frac{1 \pm \sqrt{5}}{2}$$

But $\frac{1-\sqrt{5}}{2} < 0$, but $s_n \ge 0$ for all n and therefore $\left| s = \frac{1+\sqrt{5}}{2} = \phi \right|$ (the golden ratio).

AP 4

First of all, $t_n > 0$ for all n (easy induction). Moreover, for all n,

$$\frac{t_{n+1}}{t_n} = \frac{\left(\frac{n}{n+2}\right)t_n}{t_n} = \frac{n}{n+2} < 1$$

And therefore $t_{n+1} < t_n$, so (t_n) is decreasing.

Since (t_n) is decreasing and bounded below, by the Monotone Sequence Theorem, (t_n) converges.

AP 5

Consider $S = \{s_n \mid n \in \mathbb{N}\}.$

Since (s_n) is bounded below, for some C, we have $s_n \ge C$ for all n, and therefore S is bounded below and therefore has a least upper bound $s = \infty(S)$

Claim: (s_n) converges to s.

Let $\epsilon > 0$ be given, then notice $s + \epsilon > m$ and therefore there is some s_N such that $s_N < s + \epsilon$. But then, since (s_n) is decreasing, if n > N, $s_n < s_N < s + \epsilon$, so $s_n < s + \epsilon$, so $s_n - s < \epsilon$. Moreover, since (s_n) is bounded below by s, we also have $s_n \ge s > s - \epsilon$, so $s_n - s > -\epsilon$

Therefore, if n > N, $-\epsilon < s_n - s < \epsilon$, so $|s_n - s| < \epsilon$.

Therefore (s_n) converges to m

AP 6(A)

Claim 1: $s_n \ge \sqrt{a}$ for all n

First of all, $s_1 = b \ge \sqrt{a}$. Moreover, if m > 1, then m = n+1 for some $n \in \mathbb{N}$, and so:

Inductive Step: Suppose P_n is true, that is $s_n \ge \sqrt{a}$. Show P_{n+1} is true, that is $s_{n+1} \ge \sqrt{a}$, but then:

$$s_m - \sqrt{a} = s_{n+1} - \sqrt{a}$$

$$= \frac{1}{2} \left(s_n + \frac{a}{s_n} \right) - \sqrt{a}$$

$$= \frac{1}{2} \left(s_n - 2\sqrt{a} + \frac{a}{s_n} \right)$$

$$= \frac{1}{2} \left((\sqrt{s_n})^2 - 2\sqrt{s_n} \left(\sqrt{\frac{a}{s_n}} \right) + \left(\sqrt{\frac{a}{s_n}} \right)^2 \right)$$

$$= \frac{1}{2} \left(\sqrt{s_n} - \sqrt{\frac{a}{s_n}} \right)^2$$

$$\ge 0$$

This combined with $s_1 \ge \sqrt{a}$ allows us to conclude that for all $n \in \mathbb{N}$, we have $s_n \ge \sqrt{a}$.

Claim 2: $s_{n+1} \leq s_n$ for all n

But

$$s_{n+1} - s_n = \frac{1}{2} \left(s_n + \frac{a}{s_n} \right) - s_n$$
$$= \frac{1}{2} \left(-s_n + \frac{a}{s_n} \right)$$
$$= \frac{1}{2} \left(\frac{-(s_n)^2 + a}{s_n} \right)$$

But from before $s_n \ge \sqrt{a}$, so $(s_n)^2 \ge a$ and so $-(s_n)^2 + a \le 0$

And therefore we ge $s_{n+1} - s_n \leq 0$, so $s_{n+1} \leq s_n$

Therefore (s_n) is a nonincreasing sequence that is bounded below by \sqrt{a} , and hence (s_n) converges to s.

And passing to the limit in

$$s_{n+1} = \frac{1}{2} \left(s_n + \frac{a}{s_n} \right)$$

We get:

$$s = \frac{1}{2} \left(s + \frac{a}{s} \right)$$
$$2s = \frac{s^2 + a}{s}$$
$$2s^2 s^2 + a$$
$$s^2 = a$$
$$s = \pm \sqrt{a}$$

But since $s_n \ge 0$, we ultimately get $s = \sqrt{a}$.

$$s_{1} = 2$$

$$s_{2} = \frac{1}{2} \left(2 + \frac{2}{2} \right) = \frac{3}{2} = 1.5$$

$$s_{3} = \frac{1}{2} \left(1.5 + \frac{2}{1.5} \right) \approx 1.41666 \dots$$

$$s_{4} = \frac{1}{2} \left(1.41666 + \frac{2}{1.41666} \right) \approx 1.4142 \dots$$

AP 8(B)