
HOMEWORK 4 − AP SOLUTIONS

AP 1:

STEP 1: Scratch Work

Since a > 1, we can write a = (1 + b) for b = a− 1 > 0, but then

an =(1 + b)n

=1n + n1n−1b+ Positive Junk

=1 + nb+ Positive Junk

>nb

>M

Which gives nb > M ⇒ n > M
b , which suggests to use N = M

b .

STEP 2: Actual Proof.

Let M > 0 be given and let N = M
b , then if n > N , we have

an > nb >

(
M

b

)
b = M✓

Hence limn→∞ an = ∞. □

AP 2:

STEP 1: Scratch Work

Date: Friday, September 24, 2021.

1



2 HOMEWORK 4 − AP SOLUTIONS

Since (tn) is bounded above, we have |tn| = tn ≤ C for some C > 0
and hence

sn
tn

≥ sn
C

> M

Which gives sn > CM .

STEP 2: Actual Proof

Let M > 0 be given.

Since (tn) is bounded above, we know there is C > 0 such that for all
n, |tn| = tn ≤ C

Now since sn → ∞, there is N such that if n > N , then sn > MC

Now for the same N , if n > N , then we have

sn
tn

≥ sn
C

>
MC

C
= M✓

Therefore limn→∞
sn
tn

= ∞ □

AP 3

Claim 1: sn ≤ 2 for all n

Proof: Let Pn be the proposition “sn ≤ 2”

Base Case: s1 = 1 ≤ 2✓
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Inductive Step: Suppose Pn is true, that is sn ≤ 2, show Pn+1 is
true, that is sn+1 ≤ 2. But then, we get:

sn+1 =
√
sn + 1 ≤

√
2 + 1 =

√
3 ≤

√
4 = 2

Hence Pn+1 is true, so Pn is true for all n, that is sn ≤ 2 for all n ✓

Claim 2: (sn) is increasing

Proof: Let Pn be the proposition sn+1 > sn

Base Case: s2 =
√
s1 + 1 =

√
1 + 1 =

√
2 > 1 = s1✓

Inductive Step: Suppose Pn is true, that is sn+1 > sn. Show Pn+1 is
true, that is sn+2 > sn+1. But:

sn+2 − sn+1 =
√
sn+1 + 1−

√
sn + 1

=
(√

sn+1 + 1−
√
sn + 1

)(√sn+1 + 1 +
√
sn + 1√

sn+1 + 1 +
√
sn + 1

)
=
(
√
sn+1 + 1)

2 −
(√

sn + 1
)2

√
sn+1 + 1 +

√
sn + 1

=
sn+1 + 1− sn − 1√
sn+1 + 1 +

√
sn + 1

=
sn+1 − sn√

sn+1 + 1 +
√
sn + 1

But by the inductive hypothesis, sn+1 − sn > 0, and the denominator
is positive as well, and so sn+2 − sn+1 > 0, that is sn+2 > sn+1.
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Therefore Pn+1 is true, and hence Pn is true for all n, that is sn+1 > sn
for all n ✓

Therefore since (sn) is increasing and bounded above (by 2), by the
Monotone Sequence Theorem, (sn) converges to s.

Passing to the limit in the identity sn+1 =
√
sn + 1 we get:

s =
√
s+ 1

s2 =s+ 1

s2 − s− 1 =0

s =
1±

√
5

2

But 1−
√
5

2 < 0, but sn ≥ 0 for all n and therefore s = 1+
√
5

2 = ϕ (the

golden ratio).

AP 4

First of all, tn > 0 for all n (easy induction). Moreover, for all n,

tn+1

tn
=

(
n

n+2

)
tn

tn
=

n

n+ 2
< 1

And therefore tn+1 < tn, so (tn) is decreasing.

Since (tn) is decreasing and bounded below, by the Monotone Sequence
Theorem, (tn) converges.

AP 5
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Consider S = {sn | n ∈ N}.

Since (sn) is bounded below, for some C, we have sn ≥ C for all n, and
therefore S is bounded below and therefore has a least upper bound
s = ∞(S)

Claim: (sn) converges to s.

Let ϵ > 0 be given, then notice s+ ϵ > m and therefore there is some
sN such that sN < s+ ϵ. But then, since (sn) is decreasing, if n > N ,
sn < sN < s + ϵ, so sn < s + ϵ, so sn − s < ϵ. Moreover, since (sn) is
bounded below by s, we also have sn ≥ s > s− ϵ, so sn − s > −ϵ

Therefore, if n > N , −ϵ < sn − s < ϵ, so |sn − s| < ϵ.

Therefore (sn) converges to m □

AP 6(a)

Claim 1: sn ≥
√
a for all n

First of all, s1 = b ≥
√
a. Moreover, if m > 1, then m = n+1 for some

n ∈ N, and so:

Inductive Step: Suppose Pn is true, that is sn ≥
√
a. Show Pn+1 is

true, that is sn+1 ≥
√
a, but then:
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sm −
√
a =sn+1 −

√
a

=
1

2

(
sn +

a

sn

)
−

√
a

=
1

2

(
sn − 2

√
a+

a

sn

)
=
1

2

(
(
√
sn)

2 − 2
√
sn

(√
a

sn

)
+

(√
a

sn

)2
)

=
1

2

(
√
sn −

√
a

sn

)2

≥0

This combined with s1 ≥
√
a allows us to conclude that for all n ∈ N,

we have sn ≥
√
a.

Claim 2: sn+1 ≤ sn for all n

But

sn+1 − sn =
1

2

(
sn +

a

sn

)
− sn

=
1

2

(
−sn +

a

sn

)
=
1

2

(
− (sn)

2 + a

sn

)
But from before sn ≥

√
a, so (sn)

2 ≥ a and so − (sn)
2 + a ≤ 0

And therefore we ge sn+1 − sn ≤ 0, so sn+1 ≤ sn
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Therefore (sn) is a nonincreasing sequence that is bounded below by√
a, and hence (sn) converges to s.

And passing to the limit in

sn+1 =
1

2

(
sn +

a

sn

)
We get:

s =
1

2

(
s+

a

s

)
2s =

s2 + a

s
2s2s2 + a

s2 =a

s =±
√
a

But since sn ≥ 0, we ultimately get s =
√
a.

AP 8(b)

s1 =2

s2 =
1

2

(
2 +

2

2

)
=

3

2
= 1.5

s3 =
1

2

(
1.5 +

2

1.5

)
≈ 1.41666 . . .

s4 =
1

2

(
1.41666 +

2

1.41666

)
≈ 1.4142 . . .
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