HOMEWORK 4 - AP SOLUTIONS

AP 1:

STEP 1: Scratch Work
Since $a>1$, we can write $a=(1+b)$ for $b=a-1>0$, but then

$$
\begin{aligned}
a^{n} & =(1+b)^{n} \\
& =1^{n}+n 1^{n-1} b+\text { Positive Junk } \\
& =1+n b+\text { Positive Junk } \\
& >n b \\
& >M
\end{aligned}
$$

Which gives $n b>M \Rightarrow n>\frac{M}{b}$, which suggests to use $N=\frac{M}{b}$.
STEP 2: Actual Proof.
Let $M>0$ be given and let $N=\frac{M}{b}$, then if $n>N$, we have

$$
a^{n}>n b>\left(\frac{M}{b}\right) b=M \checkmark
$$

Hence $\lim _{n \rightarrow \infty} a^{n}=\infty$.
AP 2:
STEP 1: Scratch Work

Since $\left(t_{n}\right)$ is bounded above, we have $\left|t_{n}\right|=t_{n} \leq C$ for some $C>0$ and hence

$$
\frac{s_{n}}{t_{n}} \geq \frac{s_{n}}{C}>M
$$

Which gives $s_{n}>C M$.

STEP 2: Actual Proof

Let $M>0$ be given.
Since $\left(t_{n}\right)$ is bounded above, we know there is $C>0$ such that for all $n,\left|t_{n}\right|=t_{n} \leq C$

Now since $s_{n} \rightarrow \infty$, there is N such that if $n>N$, then $s_{n}>M C$
Now for the same N, if $n>N$, then we have

$$
\frac{s_{n}}{t_{n}} \geq \frac{s_{n}}{C}>\frac{M C}{C}=M \checkmark
$$

Therefore $\lim _{n \rightarrow \infty} \frac{s_{n}}{t_{n}}=\infty$

$$
\text { AP } 3
$$

Claim 1: $s_{n} \leq 2$ for all n
Proof: Let P_{n} be the proposition " $s_{n} \leq 2$ "
Base Case: $s_{1}=1 \leq 2 \checkmark$

Inductive Step: Suppose P_{n} is true, that is $s_{n} \leq 2$, show P_{n+1} is true, that is $s_{n+1} \leq 2$. But then, we get:

$$
s_{n+1}=\sqrt{s_{n}+1} \leq \sqrt{2+1}=\sqrt{3} \leq \sqrt{4}=2
$$

Hence P_{n+1} is true, so P_{n} is true for all n, that is $s_{n} \leq 2$ for all $n \checkmark$
Claim 2: $\left(s_{n}\right)$ is increasing
Proof: Let P_{n} be the proposition $s_{n+1}>s_{n}$
Base Case: $s_{2}=\sqrt{s_{1}+1}=\sqrt{1+1}=\sqrt{2}>1=s_{1} \checkmark$
Inductive Step: Suppose P_{n} is true, that is $s_{n+1}>s_{n}$. Show P_{n+1} is true, that is $s_{n+2}>s_{n+1}$. But:

$$
\begin{aligned}
s_{n+2}-s_{n+1} & =\sqrt{s_{n+1}+1}-\sqrt{s_{n}+1} \\
& =\left(\sqrt{s_{n+1}+1}-\sqrt{s_{n}+1}\right)\left(\frac{\sqrt{s_{n+1}+1}+\sqrt{s_{n}+1}}{\sqrt{s_{n+1}+1}+\sqrt{s_{n}+1}}\right) \\
& =\frac{\left(\sqrt{s_{n+1}+1}\right)^{2}-\left(\sqrt{s_{n}+1}\right)^{2}}{\sqrt{s_{n+1}+1}+\sqrt{s_{n}+1}} \\
& =\frac{s_{n+1}+1-s_{n}-1}{\sqrt{s_{n+1}+1}+\sqrt{s_{n}+1}} \\
& =\frac{s_{n+1}-s_{n}}{\sqrt{s_{n+1}+1}+\sqrt{s_{n}+1}}
\end{aligned}
$$

But by the inductive hypothesis, $s_{n+1}-s_{n}>0$, and the denominator is positive as well, and so $s_{n+2}-s_{n+1}>0$, that is $s_{n+2}>s_{n+1}$.

Therefore P_{n+1} is true, and hence P_{n} is true for all n, that is $s_{n+1}>s_{n}$ for all $n \checkmark$

Therefore since $\left(s_{n}\right)$ is increasing and bounded above (by 2), by the Monotone Sequence Theorem, $\left(s_{n}\right)$ converges to s.

Passing to the limit in the identity $s_{n+1}=\sqrt{s_{n}+1}$ we get:

$$
\begin{aligned}
s & =\sqrt{s+1} \\
s^{2} & =s+1 \\
s^{2}-s-1 & =0 \\
s & =\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

But $\frac{1-\sqrt{5}}{2}<0$, but $s_{n} \geq 0$ for all n and therefore $s=\frac{1+\sqrt{5}}{2}=\phi$ (the golden ratio).

$$
\text { AP } 4
$$

First of all, $t_{n}>0$ for all n (easy induction). Moreover, for all n,

$$
\frac{t_{n+1}}{t_{n}}=\frac{\left(\frac{n}{n+2}\right) t_{n}}{t_{n}}=\frac{n}{n+2}<1
$$

And therefore $t_{n+1}<t_{n}$, so $\left(t_{n}\right)$ is decreasing.
Since $\left(t_{n}\right)$ is decreasing and bounded below, by the Monotone Sequence Theorem, $\left(t_{n}\right)$ converges.

AP 5

Consider $S=\left\{s_{n} \mid n \in \mathbb{N}\right\}$.
Since $\left(s_{n}\right)$ is bounded below, for some C, we have $s_{n} \geq C$ for all n, and therefore S is bounded below and therefore has a least upper bound $s=\infty(S)$

Claim: $\left(s_{n}\right)$ converges to s.
Let $\epsilon>0$ be given, then notice $s+\epsilon>m$ and therefore there is some s_{N} such that $s_{N}<s+\epsilon$. But then, since $\left(s_{n}\right)$ is decreasing, if $n>N$, $s_{n}<s_{N}<s+\epsilon$, so $s_{n}<s+\epsilon$, so $s_{n}-s<\epsilon$. Moreover, since $\left(s_{n}\right)$ is bounded below by s, we also have $s_{n} \geq s>s-\epsilon$, so $s_{n}-s>-\epsilon$

Therefore, if $n>N,-\epsilon<s_{n}-s<\epsilon$, so $\left|s_{n}-s\right|<\epsilon$.
Therefore $\left(s_{n}\right)$ converges to m

AP 6(A)
Claim 1: $s_{n} \geq \sqrt{a}$ for all n

First of all, $s_{1}=b \geq \sqrt{a}$. Moreover, if $m>1$, then $m=n+1$ for some $n \in \mathbb{N}$, and so:

Inductive Step: Suppose P_{n} is true, that is $s_{n} \geq \sqrt{a}$. Show P_{n+1} is true, that is $s_{n+1} \geq \sqrt{a}$, but then:

$$
\begin{aligned}
s_{m}-\sqrt{a} & =s_{n+1}-\sqrt{a} \\
& =\frac{1}{2}\left(s_{n}+\frac{a}{s_{n}}\right)-\sqrt{a} \\
& =\frac{1}{2}\left(s_{n}-2 \sqrt{a}+\frac{a}{s_{n}}\right) \\
& =\frac{1}{2}\left(\left(\sqrt{s_{n}}\right)^{2}-2 \sqrt{s_{n}}\left(\sqrt{\frac{a}{s_{n}}}\right)+\left(\sqrt{\frac{a}{s_{n}}}\right)^{2}\right) \\
& =\frac{1}{2}\left(\sqrt{s_{n}}-\sqrt{\frac{a}{s_{n}}}\right)^{2} \\
& \geq 0
\end{aligned}
$$

This combined with $s_{1} \geq \sqrt{a}$ allows us to conclude that for all $n \in \mathbb{N}$, we have $s_{n} \geq \sqrt{a}$.

Claim 2: $s_{n+1} \leq s_{n}$ for all n
But

$$
\begin{aligned}
s_{n+1}-s_{n} & =\frac{1}{2}\left(s_{n}+\frac{a}{s_{n}}\right)-s_{n} \\
& =\frac{1}{2}\left(-s_{n}+\frac{a}{s_{n}}\right) \\
& =\frac{1}{2}\left(\frac{-\left(s_{n}\right)^{2}+a}{s_{n}}\right)
\end{aligned}
$$

But from before $s_{n} \geq \sqrt{a}$, so $\left(s_{n}\right)^{2} \geq a$ and so $-\left(s_{n}\right)^{2}+a \leq 0$
And therefore we ge $s_{n+1}-s_{n} \leq 0$, so $s_{n+1} \leq s_{n}$

Therefore $\left(s_{n}\right)$ is a nonincreasing sequence that is bounded below by \sqrt{a}, and hence $\left(s_{n}\right)$ converges to s.

And passing to the limit in

$$
s_{n+1}=\frac{1}{2}\left(s_{n}+\frac{a}{s_{n}}\right)
$$

We get:

$$
\begin{aligned}
& s=\frac{1}{2}\left(s+\frac{a}{s}\right) \\
& 2 s=\frac{s^{2}+a}{s} \\
& 2 s^{2} s^{2}+a \\
& s^{2}=a \\
& s= \pm \sqrt{a}
\end{aligned}
$$

But since $s_{n} \geq 0$, we ultimately get $s=\sqrt{a}$.

$$
\begin{aligned}
& \mathrm{AP} 8(\mathrm{~B}) \\
& s_{1}=2 \\
& s_{2}=\frac{1}{2}\left(2+\frac{2}{2}\right)=\frac{3}{2}=1.5 \\
& s_{3}=\frac{1}{2}\left(1.5+\frac{2}{1.5}\right) \approx 1.41666 \ldots \\
& s_{4}=\frac{1}{2}\left(1.41666+\frac{2}{1.41666}\right) \approx 1.4142 \ldots
\end{aligned}
$$

