MATH S4062 - HOMEWORK 4

Additional Problem 1: Show using geometric sums that if

$$
D_{N}(x)=\sum_{n=-N}^{N} e^{i n x} \text { then } D_{N}(x)=\frac{\sin \left(\left(N+\frac{1}{2}\right) x\right)}{\sin \left(\frac{x}{2}\right)}
$$

Additional Problem 2: The Féjer Kernel is defined as

$$
F_{N}(x)=\frac{1}{N} \sum_{M=0}^{N-1} D_{M}(x)
$$

Show that $\frac{1}{2 \pi} \int_{-\pi}^{\pi} F_{N}(x) d x=1$ and

$$
F_{N}(x)=\frac{1}{N}\left(\frac{\sin ^{2}\left(\frac{N x}{2}\right)}{\sin ^{2}\left(\frac{x}{2}\right)}\right)
$$

Additional Problem 3: Suppose f is a 2π periodic function that is of class ${ }^{11} C^{k}$ for some $k \geq 1$. Show that there is a constant C (depending on k) such that

$$
|\hat{f}(n)| \leq \frac{C}{|n|^{k}}
$$

And deduce from a theorem in lecture that if $k \geq 2$, then the Fourier series of f converges to f uniformly.
${ }^{1}$ This means that $f, f^{\prime}, f^{\prime \prime}, \cdots f^{(k)}$ exist and are continuous

Additional Problem 4: Let $\left\{f_{k}\right\}_{k=1}^{\infty}$ be a sequence of Riemann integrable functions on $[-\pi, \pi]$ such that

$$
\lim _{k \rightarrow \infty} \int_{-\pi}^{\pi}\left|f_{k}(x)-f(x)\right| d x=0
$$

Show that for all $n, \lim _{k \rightarrow \infty} \hat{f}_{k}(n)=\hat{f}(n)$ uniformly in n
Additional Problem 5: Let $\left\{K_{n}\right\}_{n=1}^{\infty}$ be a family of functions called good kernels with the following properties:
(1) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}(x) d x=1$
(2) There is $M>0$ such that for all n,

$$
\int_{-\pi}^{\pi}\left|K_{n}(x)\right| d x \leq M
$$

(3) For every $\delta>0$,

$$
\lim _{n \rightarrow \infty} \int_{\delta \leq|x| \leq \pi}\left|K_{n}(x)\right| d x=0
$$

Suppose f is a 2π periodic function that is continuous at x, show that

$$
\lim _{n \rightarrow \infty}\left(f \star K_{n}\right)(x)=f(x)
$$

Aside: The Dirichlet kernel is not a good kernel, so we can't apply this result to $S_{N}(f)$

Hints:

Additional Problem 1: Notice $e^{i n x}=\left(e^{i x}\right)^{n}=\omega^{n}$ where $\omega=e^{i x}$, and split up the sum as:

$$
\sum_{n=-N}^{-1} e^{i n x}+\sum_{n=0}^{N} e^{i n x}
$$

Once you add up the two sums, multiply top and bottom by $\omega^{-\frac{1}{2}}$
Additional Problem 2: One way to do this is to use the explicit formula for D_{N} and

$$
2 \sin (A) \sin (B)=\cos (A-B)-\cos (A+B)
$$

Additional Problem 3: Mimic the proof I gave in lecture with $f^{\prime \prime}$
Additional Problem 5: Use that $f(x)=\frac{1}{2 \pi} f(x) \int_{-\pi}^{\pi} K_{n}(y) d y$ Then split up the integral of the difference in two parts, one on $|y|<\delta$ and the other one on $\delta \leq|y| \leq \pi$.

