MATH 409 - HOMEWORK 5

Note: This assignment is shorter than usual, to give you some time to breathe after the midterm \odot

Readings: Sections 10 and 11. This time in section 10 focus on Cauchy sequences. Section 11 in the book is a bit awkward; as long as you understand what I did in lecture, you're good. You don't need to read section 12 to do the problem below.

- Section 10: AP1, AP2
- Section 11: 8, 9, 11, AP3, AP4
- Section 12: 4

Additional Problem 1: Show that \mathbb{Z} is complete, that is any Cauchy sequence in \mathbb{Z} converges.

Additional Problem 2: Here's another construction of \mathbb{Q} that doesn't use any cuts or decimal expansions!

Definition: We write $\left(p_{n}\right) \sim\left(q_{n}\right)$ if and only if $\lim _{n \rightarrow \infty} p_{n}-q_{n}=0$
Show that \sim is an equivalence relation on the set of all sequences in \mathbb{Q}.

Date: Due: Friday, October 8, 2021.

Note: We then define \mathbb{R} as the set of all equivalence classes of Cauchy sequences in \mathbb{Q} (with the equivalence relation above). For example $\pi=[(3,3.1,3.14,3.141, \ldots)]$. In other words, a real number is just a sequence of rational numbers approximating it! It's like the problem itself is the solution!

Additional Problem 3: Suppose $\left(s_{n}\right)$ is a sequence with the property that every subsequence has a further subsequence that converges to s. Prove that $\left(s_{n}\right)$ converges to s.

Additional Problem 4:

(a) Suppose $\left(s_{n}\right)$ is a bounded sequence with the property that every convergent subsequence of $\left(s_{n}\right)$ converges to s. Show that $\left(s_{n}\right)$ converges to s.
(b) Show that (a) is false if $\left(s_{n}\right)$ is not bounded

Hints:

AP1: Could two different integers ever be close to each other? If you're not convinced, try the definition of a Cauchy sequence, but with $\epsilon=1$.

AP3: Do it by contradiction: Suppose $\left(s_{n}\right)$ does not converge to s and use this to find a subsequence that has no convergent further subsequence.

AP4: Do it by contradiction: Suppose $\left(s_{n}\right)$ doesn't converge to s and construct a subsequence that doesn't converge to s (it's actually the same subsequence as in AP3). But doesn't the Bolzano-Weierstraß Theorem not apply to that subsequence?

