HOMEWORK 5 - AP SOLUTIONS

AP 1

Let $\left(s_{n}\right)$ be a Cauchy sequence in \mathbb{Z}. We want to show that $\left(s_{n}\right)$ converges.

But letting $\epsilon=1$ in the definition of Cauchy, there is N such that if $m, n>N$, then $\left|s_{n}-s_{m}\right|<1$.

Letting $m=N+1$, we get that for all $n>N$, then $\left|s_{n}-s_{N+1}\right|<1$ which implies that $s_{n}=s_{N+1}$ since no different integers are less than 1 apart. so $\left(s_{n}\right)$ is just the sequence ($s_{1}, s_{2}, \cdots, s_{N}, s_{N+1}, s_{N+1}, \cdots$), which is eventually constant and therefore converges to s_{N+1}.

AP 2

Reflexivity: Is $\left(p_{n}\right) \sim\left(p_{n}\right)$? Yes because $p_{n}-p_{n}=0$, and therefore

$$
\lim _{n \rightarrow \infty} p_{n}-p_{n}=\lim _{n \rightarrow \infty} 0=0
$$

Symmetry Suppose $\left(p_{n}\right) \sim\left(q_{n}\right)$, that is $\lim _{n \rightarrow \infty}\left|p_{n}-q_{n}\right|=0$, but then

$$
\lim _{n \rightarrow \infty} q_{n}-p_{n}=-\lim _{n \rightarrow \infty}\left|p_{n}-q_{n}\right|=-0=0
$$

Hence $\left(q_{n}\right) \sim\left(p_{n}\right) \checkmark$

Transitivity Suppose $\left(p_{n}\right) \sim\left(q_{n}\right)$ and $\left(q_{n}\right) \sim\left(r_{n}\right)$. But then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} p_{n}-r_{n} & =\lim _{n \rightarrow \infty} p_{n}-q_{n}+q_{n}-r_{n} \\
& =\lim _{n \rightarrow \infty} p_{n}-q_{n}+\lim _{n \rightarrow \infty} q_{n}-r_{n} \\
& =0+0 \\
& =0
\end{aligned}
$$

Hence $\left(p_{n}\right) \sim\left(r_{n}\right) \checkmark$

AP 3

Suppose (s_{n}) doesn't converge to s. Then there is $\epsilon>0$ such that for all N there is $n>N$ with $\left|s_{n}-s\right|>\epsilon$

In particular, for $N=1$ there is $n_{1}>1$ with $\left|s_{n_{1}}-s\right|>\epsilon$
And for $N=n_{1}$ there is $n_{2}>n_{1}$ with $\left|s_{n_{2}}-s\right|>\epsilon$
And, in general, for $N=n_{k}$ there is $n_{k+1}>n_{k}$ such that $\left|s_{n_{k+1}}-s\right|>\epsilon$.
Therefore we have inductively constructed a subsequence $\left(s_{n_{k}}\right)$ of $\left(s_{n}\right)$ with $\left|s_{n_{k}}-s\right|>\epsilon$ for all k. But no subsequence of $\left(s_{n_{k}}\right)$ converges to s (since all the terms are at least ϵ away from s)

AP 4(A)
Suppose s_{n} doesn't converge to s. Then there is $\epsilon>0$ such that for all N there is $n>N$ with $\left|s_{n}-s\right|>\epsilon$. Construct the same subsequence $\left(s_{n_{k}}\right)$ as in the previous problem.

Since $\left(s_{n_{k}}\right)$ is bounded, by the Bolzano-Weierstraß Theorem, $\left(s_{n_{k}}\right)$ has a convergent subsequence. By assumption, that (sub-)subsequence
must converge to s, but this contradicts $\left|s_{n_{k}}-s\right|>\epsilon$ for all k (and in particular for the sub-subsequence) $\Rightarrow \Leftarrow$
AP 4(в)

Consider:

$$
s_{n}= \begin{cases}n & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

Then every convergent subsequence of $\left(s_{n}\right)$ must converge to 0 (because it must eventually end with all 0 's), but $\left(s_{n}\right)$ doesn't converge to 0 .

