HOMEWORK 5 - SELECTED BOOK SOLUTIONS

11.8

First of all, for all sets S, we know that $\inf (S)=-\sup (-S)$. Now if N is arbitrary, this implies in particular that

$$
\inf \left\{s_{n} \mid n>N\right\}=-\sup \left(-\left\{s_{n} \mid n>N\right\}\right)=-\sup \left\{-s_{n} \mid n>N\right\}
$$

Now taking the limit as $N \rightarrow \infty$ of both sides, we get:

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} s_{n} & =\lim _{N \rightarrow \infty} \inf \left\{s_{n} \mid n>N\right\} \\
& =\lim _{N \rightarrow \infty}-\sup \left\{-s_{n} \mid n>N\right\} \\
& =-\lim _{N \rightarrow \infty} \sup \left\{-s_{n} \mid n>N\right\} \\
& =-\limsup _{n \rightarrow \infty}-s_{n} \checkmark
\end{aligned}
$$

11.9

Suppose s_{n} is a sequence in $[a, b]$ that converges to s. We need to show that s is in $[a, b]$

We know $s_{n} \geq a$ for all n, but then, by the result of 8.9(a), this implies that $s \geq a$

Similarly, $s_{n} \leq b$ for all n, but then, by 8.9(b), this implies $s \leq b$

Therefore $a \leq s \leq b$, so s is in $[a, b] \checkmark$
For part (b), the answer is NO, because $(0,1)$ is not a closed set: For example, $t_{n}=\frac{1}{n}$ (with $n \geq 2$) is a sequence in $(0,1)$ but whose limit is $0 \notin(0,1)$.

11.11

First of all, if $\sup (S) \in S$, then we're done: Let $s_{n} \equiv \sup (S)$, then s_{n} is nondecreasing and converges to $\sup (S)$.

So, from now on, assume $\sup (S) \notin S$
Goal: Inductively construct an increasing sequence $\left(s_{n}\right)$ such that for all n, we have

$$
\sup (S)-\frac{1}{n}<s_{n}<\sup (S)
$$

Then the squeeze theorem implies that $s_{n} \rightarrow \sup (S)$, and we would be done.

Base Case: Notice $\sup (S)-1<\sup (S)$, so by definition of sup, there is s_{1} with $s_{1}>\sup (S)-1$. Moreover, by definition of $\sup (S)$ and the fact that $\sup (S) \notin S$, we get $s_{1}<\sup (S)$, so $\sup (S)-1<s_{1}<\sup (S)$

Inductive Step: Suppose we constructed $s_{1}<s_{2}<\cdots<s_{n}$ with $\sup (S)-\frac{1}{k}<s_{k}<\sup (S)$ for all $k=1, \ldots, n$.

Consider $M=\max \left\{s_{n}, \sup (S)-\frac{1}{n+1}\right\}<\sup (S)$
Then by definition of $\sup (S)$ there is $s_{n+1} \in S$ such that $s_{n+1}>M$.

By definition of M this implies $s_{n+1}>s_{n} \checkmark$ and $s_{n+1}>\sup (S)-\frac{1}{n+1}$
Moreover, by definition of $\sup (S)$ and the fact that $\sup (S) \notin S$, we get $s_{n+1}<\sup (S), \operatorname{so} \sup (S)-\frac{1}{n+1}<s_{n+1}<\sup (S) \checkmark$

12.4

STEP 1: Let N be given. First, let's show that

$$
\sup \left\{s_{n}+t_{n} \mid n>N\right\} \leq \sup \left\{s_{n} \mid n>N\right\}+\sup \left\{t_{n} \mid n>N\right\}
$$

But if $n>N$, then by definition of sup,

$$
s_{n} \leq \sup \left\{s_{n} \mid n>N\right\}
$$

$$
\text { And } t_{n} \leq \sup \left\{t_{n} \mid n>N\right\}
$$

So adding both sides, we get

$$
s_{n}+t_{n} \leq \sup \left\{s_{n} \mid n>N\right\}+\sup \left\{t_{n} \mid n>N\right\}
$$

And taking the sup over all $n>N$, we get:

$$
\sup \left\{s_{n}+t_{n} \mid n>N\right\} \leq \sup \left\{s_{n} \mid n>N\right\}+\sup \left\{t_{n} \mid n>N\right\}
$$

STEP 2: Taking $\lim _{N \rightarrow \infty}$ in the above identity, we get:

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} s_{n}+t_{n} \stackrel{D E F}{=} \lim _{N \rightarrow \infty} \sup \left\{s_{n}+t_{n} \mid n>N\right\} \\
& \qquad \begin{aligned}
& S T E P 1 \\
& \leq \lim _{N \rightarrow \infty} \sup \left\{s_{n} \mid n>N\right\}+\sup \left\{t_{n} \mid n>N\right\} \\
&=\lim _{N \rightarrow \infty} \sup \left\{s_{n} \mid n>N\right\}+\lim _{N \rightarrow \infty} \sup \left\{t_{n} \mid n>N\right\} \\
&=\limsup _{n \rightarrow \infty} s_{n}+\limsup _{n \rightarrow \infty} t_{n} \checkmark
\end{aligned}
\end{aligned}
$$

