MATH S4062 - HOMEWORK 5

Additional Problem 1: Apply Parseval to $f(x)=|x|$ on $[-\pi, \pi]$ to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
$$

Additional Problem 2: Use the Riemann-Lebesgue Lemma to show

$$
\int_{0}^{\infty} \frac{\sin (x)}{x} d x=\frac{\pi}{2}
$$

Additional Problem 3: Show that if f is 2π periodic and continuously differentiable, then the Fourier series of f is absolutely convergent

Additional Problem 4: Show that if $f \in \mathcal{S}$, then $\hat{f}(\xi)$ is continuous on \mathbb{R}

Additional Problem 5: Prove the Poisson Summation Formula, that is, if $f \in \mathcal{S}$ then (see hints)

$$
\sum_{n=-\infty}^{\infty} f(x+n)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n x}
$$

Aside: In particular, if you let $x=0$ in the above, you get

$$
\sum_{n=-\infty}^{\infty} f(n)=\sum_{n=-\infty}^{\infty} \hat{f}(n)
$$

Hints:

Additional Problem 1: Since f is even, the Fourier series is just a cosine series

Additional Problem 2: Start with the fact that $\int_{-\pi}^{\pi} D_{N}(x) d x=2 \pi$ where D_{N} is the Dirichlet kernel.

Then use the explicit formula of D_{N} in terms of \sin.
You can then write the denominator of D_{N} as:

$$
\frac{1}{\sin \left(\frac{x}{2}\right)}=\left(\frac{1}{\sin \left(\frac{x}{2}\right)}-\frac{2}{x}\right)+\frac{2}{x}
$$

This gives you two integrals which add up to 2π.
For the first integral, use the Riemann-Lebesgue Lemma to show that the limit as $N \rightarrow \infty$ of the integral is 0 . You can ignore the $+\frac{1}{2}$ if you want, and you're allowed to use familiar limit rules from Calculus.

For the second integral, use the fact that it's an even function to get an integral from 0 to π and finally use the $u-\operatorname{sub} u=\left(N+\frac{1}{2}\right) x$ and take $N \rightarrow \infty$

Additional Problem 3: First apply Parseval to the Fourier coefficients of $f^{\prime}(x)$. We have shown in lecture that $\widehat{f}^{\prime}(n)=\operatorname{in} \hat{f}(n)$. Then write $\hat{f}(n)=\frac{1}{n}(n \hat{f}(n))$ and use the Cauchy-Schwarz inequality for series:

$$
\left(\sum_{n=-\infty}^{\infty} a_{n} b_{n}\right)^{2} \leq\left(\sum_{n=-\infty}^{\infty}\left(a_{n}\right)^{2}\right)\left(\sum_{n=-\infty}^{\infty}\left(b_{n}\right)^{2}\right)
$$

Additional Problem 4: Given $\epsilon>0$, since f is Schwartz, there is N such that $\int_{|x|>N}|f(x)| d x<\frac{\epsilon}{2}$ (no need to prove this) Then calculate $\hat{f}(\xi+h)-\hat{f}(\xi)$ and split up the resulting integral into two regions, one where $|x|>N$ and one where $|x| \leq N$. And then remember that h is small

Additional Problem 5: Beware: Since f is not periodic, $\hat{f}(n)$ is defined as

$$
\hat{f}(n)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i n x} d x
$$

(The Fourier transform at the integer n)
That said, notice that both the left-hand-side and the right-hand-side are 1 -periodic and continuous since f is Schwartz (no need to show this) and so it's enough by uniqueness to show that for all m, the m-th Fourier coefficient of the left hand side is equal to the one of right-hand-side. Here the m-th Fourier coefficient of a periodic function g is defined as $\int_{0}^{1} g(x) e^{-2 \pi i m x} d x$

You're allowed to interchange the sum and integral without proof (which follows since f is Schwartz)

