HOMEWORK 6 - AP SOLUTIONS

AP 1

(a) Let $s_{n}=-1$ for all n (which converges to -1) and let $t_{n}=$ $(-1)^{n}$. Then

$$
\limsup _{n \rightarrow \infty} s_{n}=-1 \quad \limsup _{n \rightarrow \infty} t_{n}=1
$$

But:

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} s_{n} t_{n} & =\limsup _{n \rightarrow \infty}(-1)(-1)^{n} \\
& =\limsup _{n \rightarrow \infty}(-1)^{n+1} \\
& =1 \\
& \neq\left(\limsup _{n \rightarrow \infty} s_{n}\right)\left(\limsup _{n \rightarrow \infty} t_{n}\right)=(-1)(1)=-1
\end{aligned}
$$

(b) Let $s_{n}=(-1)^{n}$ and $t_{n}=-s_{n}=(-1)^{n+1}$, then

$$
\limsup _{n \rightarrow \infty} s_{n}+t_{n}=\limsup _{n \rightarrow \infty}(-1)^{n}-(-1)^{n}=\limsup _{n \rightarrow \infty} 0=0
$$

But:

$$
\limsup _{n \rightarrow \infty} s_{n}+\limsup _{n \rightarrow \infty} s_{n}=\limsup _{n \rightarrow \infty}(-1)^{n}+\limsup _{n \rightarrow \infty}(-1)^{n+1}=1+1=2
$$

AP 2
First of all, in 12.4, we've shown that for any sequences $\left(s_{n}\right)$ and $\left(t_{n}\right)$, we have:

$$
\limsup _{n \rightarrow \infty} s_{n}+t_{n} \leq \limsup _{n \rightarrow \infty} s_{n}+\limsup _{n \rightarrow \infty} t_{n}
$$

So it is enough to show

$$
\limsup _{n \rightarrow \infty} s_{n}+t_{n} \geq \limsup _{n \rightarrow \infty} s_{n}+\limsup _{n \rightarrow \infty} t_{n}
$$

Let $t=\lim \sup _{n \rightarrow \infty} t_{n}$. Notice t is finite since $\left(t_{n}\right)$ is bounded.
Then let $\left(t_{n_{k}}\right)$ be a subsequence of $\left(t_{n}\right)$ converging to t.
Then $\left(s_{n_{k}}+t_{n_{k}}\right)$ is a subsequence of $\left(s_{n}+t_{n}\right)$ converging to $s+t$, and so, since $\lim \sup _{n \rightarrow \infty} s_{n}+t_{n}$ is the largest subsequential limit of $\left(s_{n}+t_{n}\right)$, we have:
$\limsup _{n \rightarrow \infty} s_{n}+t_{n} \geq s+t=\lim _{n \rightarrow \infty} s_{n}+\limsup _{n \rightarrow \infty} t_{n}=\limsup _{n \rightarrow \infty} s_{n}+\limsup _{n \rightarrow \infty} t_{n} \checkmark$

AP 3
(a)

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^{n}}}\right|=\left(\frac{2^{n}}{2^{n+1}}\right)\left(\frac{n+1}{n}\right)=\frac{1}{2}\left(\frac{n+1}{n}\right) \rightarrow \frac{1}{2}(1)=\frac{1}{2}<1
$$

Therefore $\sum \frac{n}{2^{n}}$ converges
(b)

$$
\left|a_{n}\right|^{\frac{1}{n}}=\left|\frac{n}{2^{n}}\right|^{\frac{1}{n}}=\frac{n^{\frac{1}{n}}}{2} \rightarrow \frac{1}{2}<1
$$

Therefore $\sum \frac{n}{2^{n}}$ converges.
(c)

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}} \\
& =\frac{(n+1)!}{n!} \frac{n^{n}}{(n+1)^{n+1}} \\
& =(n+1) \frac{n^{n}}{(n+1)^{n+1}} \\
& =\frac{n^{n}}{(n+1)^{n}} \\
& =\left(\frac{n}{n+1}\right)^{n} \\
& =\left(\frac{n}{n\left(1+\frac{1}{n}\right)}\right)^{n} \\
& =\left(\frac{1}{1+\frac{1}{n}}\right)^{n} \\
& =\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \\
& \rightarrow \frac{1}{e}<1
\end{aligned}
$$

Therefore $\sum \frac{n!}{n^{n}}$ converges.
(d) Since $\ln (n)<n$ we have $\frac{1}{\ln (n)}>\frac{1}{n}$, and therefore, since $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges, by comparison, $\sum_{n=2}^{\infty} \frac{1}{\ln (n)}$ diverges.
(e) Notice that, if n is even, then

$$
a_{n}=\left(\frac{5}{(-1)^{n}+4}\right)^{\frac{1}{n}}=\left(\frac{5}{5}\right)^{\frac{1}{n}}=1
$$

So since $a_{n} \rightarrow 0$ we get that $\sum\left(\frac{5}{(-1)^{n}+4}\right)^{\frac{1}{n}}$ diverges.

$$
\text { AP } 4
$$

(a)

$$
\begin{aligned}
s_{n} & =\sum_{k=1}^{n} \frac{1}{k(k+1)} \\
& =\sum_{k=1}^{n} \frac{1}{k}-\frac{1}{k+1} \\
& =1-\frac{1}{2}+\frac{1}{2}-\frac{1}{\hbar}+\cdots+\frac{1}{n}-\frac{1}{n+1} \\
& =1-\frac{1}{n+1}
\end{aligned}
$$

Therefore

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim _{n \rightarrow \infty} 1-\frac{1}{n+1}=1
$$

(b) Following the hint, we get, for all n

$$
\begin{aligned}
s_{n} & =\sum_{k=1}^{n} \frac{k-1}{2^{k+1}} \\
& =\sum_{k=1}^{n} \frac{k}{2^{k}}-\frac{k+1}{2^{k+1}} \\
& =\frac{1}{2}-\frac{2}{4}+\frac{2}{4}-\frac{3}{8}+\frac{3}{8}-\frac{4}{16}+\cdots+\frac{n}{2^{n}}-\frac{n+1}{2^{n+1}} \\
& =\frac{1}{2}-\frac{n+1}{2^{n+1}} \\
& =\frac{1}{2}-\frac{1}{2}\left(\frac{n}{2^{n}}\right)-\frac{1}{2^{n+1}}
\end{aligned}
$$

However, since $\frac{n}{2^{n}} \rightarrow 0$ as n goes to infinity, we get

$$
\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}}=\lim _{n \rightarrow \infty} s_{n}=\frac{1}{2}
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\sum_{n=1}^{\infty} \frac{n-1+1}{2^{n}}=\sum_{n=1}^{\infty} \frac{n-1}{2^{n}}+\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+1=\frac{3}{2}
$$

(d)

$$
\begin{aligned}
s_{n}= & \sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} \\
= & \sum_{k=1}^{n} \frac{1}{2 k}-\frac{1}{k+1}+\frac{1}{2 k+4} \\
= & \frac{1}{2}-\frac{1}{2}+\frac{1}{6} \\
& +\frac{1}{4}-\frac{1}{3}+\frac{1}{8} \\
& +\frac{1}{6}-\frac{1}{4}+\frac{1}{10} \\
& +\frac{1}{8}-\frac{1}{5}+\frac{1}{12} \\
& \cdots \\
& +\frac{1}{2 n}-\frac{1}{2 n+1}+\frac{1}{2 n+4} \\
= & \frac{1}{4}-\frac{1}{2}+\frac{1}{4}+\frac{1}{2 n+4} \\
= & \frac{1}{4}+\frac{1}{2 n+4}
\end{aligned}
$$

Hence:

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{1}{4}+\frac{1}{2 n+4}=\frac{1}{4}
$$

(a) Here $a_{k}=\frac{1}{k^{p}}$, so:

$$
\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}=\sum_{k=0}^{\infty} \frac{2^{k}}{\left(2^{k}\right)^{p}}=\sum_{k=0}^{\infty}\left(\frac{2}{2^{p}}\right)^{k}=\sum_{k=0}^{\infty}\left(2^{1-p}\right)^{k}
$$

Which is the geometric series, which converges if and only if $2^{1-p}<1$, that is $1-p<0$, so $p>1$
(b) Here $a_{k}=\frac{1}{k(\ln (k))^{\nu}}$, so

$$
\sum_{k=1}^{\infty} 2^{k} a_{2^{k}}=\sum_{k=1}^{\infty} \frac{2^{k}}{2^{k}\left(\ln \left(2^{k}\right)\right)^{p}}=\sum_{k=1}^{\infty} \frac{1}{(k \ln (2))^{p}}=\frac{1}{(\ln (2))^{p}} \sum_{k=1}^{\infty} \frac{1}{k^{p}}
$$

Which, by (a) converges if and only if $p>1$
(c)

$$
\begin{aligned}
\sum_{k=2}^{\infty} 2^{k} a_{2^{k}} & =\sum_{k=1}^{\infty} \frac{2^{k}}{2^{k} \ln \left(2^{k}\right) \ln \left(\ln \left(2^{k}\right)\right)} \\
& =\sum_{k=2}^{\infty} \frac{1}{k \ln (2) \ln (k \ln (2))} \\
& =\frac{1}{\ln (2)} \sum_{k=1}^{\infty} \frac{1}{k(\ln (k)+\ln (2))} \\
& \geq \frac{1}{\ln (2)} \sum_{k=1}^{\infty} \frac{1}{k(\ln (k)+\ln (k))} \\
& =\frac{1}{\ln (2)} \sum_{k=1}^{\infty} \frac{1}{2 k \ln (k)} \\
& =\frac{1}{2 \ln (2)} \sum_{k=1}^{\infty} \frac{1}{2 \ln (k)}
\end{aligned}
$$

Which diverges by the result of (b) with $p=1$, and therefore $\sum 2^{k} a_{2^{k}}$ diverges by the comparison test, so the original series diverges by the block test.
(d)

$$
\begin{aligned}
\sum_{k=2}^{\infty} 2^{k} a_{2^{k}} & =\sum_{k=1}^{\infty} \frac{2^{k}}{2^{k} \ln \left(2^{k}\right)\left(\ln \left(\ln \left(2^{k}\right)\right)\right)} \\
& =\sum_{k=2}^{\infty} \frac{1}{k \ln (2)(\ln (k \ln (2)))^{2}} \\
& =\frac{1}{\ln (2)} \sum_{k=1}^{\infty} \frac{1}{k(\ln (k)+\ln (2))^{2}} \\
& \leq \frac{1}{\ln (2)} \sum_{k=1}^{\infty} \frac{1}{k(\ln (k))^{2}}
\end{aligned}
$$

Which converges by the result of (b) with $p=2$, therefore $\sum 2^{k} a_{2^{k}}$ converges by the comparison test, so the original series converges by the block test.

$$
\text { AP } 6
$$

(a)

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{1}{(n+1)!}}{\frac{1}{n!}}\right|=\frac{n!}{(n+1)!}=\frac{1}{n+1} \rightarrow 0<1
$$

Hence $\sum \frac{1}{n!}$ converges
(b) STEP 1: Define (as in the hint)

$$
s_{n}=\sum_{k=0}^{n} \frac{1}{k!} \text { and } t_{n}=\left(1+\frac{1}{n}\right)^{n}
$$

Then, by the binomial theorem, we have:

$$
t_{n}=\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{n-k}\left(\frac{1}{n}\right)^{k}=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n^{k}}\right)
$$

But:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \ldots(n-(k-1))}{k!}
$$

And therefore:

$$
\begin{aligned}
\frac{\binom{n}{k}}{n^{k}} & =\frac{1}{k!}\left(\frac{n(n-1) \ldots(n-(k-1))}{n^{k}}\right) \\
& =\frac{1}{k!}\left(\frac{n(n-1) \ldots(n-(k-1))}{n n \ldots n}\right) \\
& =\frac{1}{k!}\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right) \ldots\left(\frac{n-(k-1)}{n}\right) \\
& =\frac{1}{k!}\left(1-\frac{1}{n}\right) \ldots\left(1-\left(\frac{k-1}{n}\right)\right)
\end{aligned}
$$

Hence, by the above, we get

$$
\begin{aligned}
t_{n} & =\sum_{k=0}^{n} \frac{1}{k!} \underbrace{\left(1-\frac{1}{n}\right)}_{\leq 1} \cdots \underbrace{\left(1-\left(\frac{k-1}{n}\right)\right)}_{\leq 1} \\
& \leq \sum_{k=0}^{n} \frac{1}{k!} \\
& =s_{n}
\end{aligned}
$$

Now taking lim sup on both sides, and remembering that $\lim _{n \rightarrow \infty} s_{n}=$ $\sum_{k=0}^{\infty} \frac{1}{k!}=e$ (by definition), we get:

$$
\limsup _{n \rightarrow \infty} t_{n} \leq \limsup _{n \rightarrow \infty} s_{n}=e
$$

So $\limsup t_{n} \leq e$

STEP 2: On the other hand, if m is fixed and $n \geq m$, then we have:

$$
\begin{aligned}
t_{n} & =\sum_{k=0}^{n} \frac{1}{k!}\left(1-\frac{1}{n}\right) \ldots\left(1-\left(\frac{k-1}{n}\right)\right) \\
& \geq \sum_{k=0}^{m} \frac{1}{k!}\left(1-\frac{1}{n}\right) \ldots\left(1-\left(\frac{k-1}{n}\right)\right)
\end{aligned}
$$

Notice that, as $n \rightarrow \infty$, for each $k=0, \ldots, m$ (fixed), we have $1-\frac{1}{n} \rightarrow 1, \ldots 1-\left(\frac{k-1}{n}\right) \rightarrow 1$, and therefore the limit as $n \rightarrow \infty$ of the right-hand-side is just $\sum_{k=0}^{m} \frac{1}{k!}$

Therefore, taking liminf on both sides, we get:

$$
\liminf _{n \rightarrow \infty} t_{n} \geq \liminf _{n \rightarrow \infty} \sum_{k=0}^{m} \frac{1}{k!}\left(1-\frac{1}{n}\right) \ldots\left(1-\left(\frac{k-1}{n}\right)\right)=\sum_{k=0}^{m} \frac{1}{k!}=s_{m}
$$

Therefore $\liminf _{n \rightarrow \infty} t_{n} \geq s_{m}$, and since this is true for all m, we can let $m \rightarrow \infty$ to get

$$
\liminf _{n \rightarrow \infty} t_{n} \geq \lim _{m \rightarrow \infty} s_{m}=e
$$

Hence $\liminf _{n \rightarrow \infty} t_{n}=e$

Therefore $\lim \inf _{n \rightarrow \infty} t_{n}=\lim \sup _{n \rightarrow \infty} t_{n}=e$ and by the limsup squeeze theorem, we have:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{n \rightarrow \infty} t_{n}=e
$$

