HOMEWORK 6 - SELECTED BOOK SOLUTIONS

12.8

STEP 1: Let N be given, then for all n > N, by definition of sup

$$s_n \le \sup \{s_n \mid n > N\} \qquad t_n \le \sup \{t_n \mid n > N\}$$

Therefore, since $s_n \ge 0$ and $t_n \ge 0$, we get:

$$s_n t_n \le \sup (\{s_n \mid n > N\}) t_n \le (\sup \{s_n \mid n > N\}) \sup \{t_n \mid n > N\}$$

Now taking the sup over n > N, we get:

$$\sup \{s_n t_n \mid n > N\} \le \sup \{s_n \mid n > N\} \sup \{t_n \mid n > N\}$$

STEP 2: Now taking the limit as $N \to \infty$ in the above, we get

$$\limsup_{n \to \infty} s_n t_n \stackrel{DEF}{=} \lim_{N \to \infty} \sup \{ s_n t_n \mid n > N \}$$

$$\stackrel{STEP1}{\leq} \lim_{N \to \infty} \sup \{ s_n \mid n > N \} \sup \{ t_n \mid n > N \}$$

$$= \lim_{N \to \infty} \sup \{ s_n \mid n > N \} \lim_{N \to \infty} \sup \{ t_n \mid n > N \}$$

$$= \left(\limsup_{n \to \infty} s_n \right) \left(\limsup_{n \to \infty} t_n \right) \checkmark$$

Date: Friday, October 15, 2021.

12.12(A)

The middle inequality follows because $\liminf \le \limsup$, so let's first show the third inequality, which is:

 $\limsup_{n \to \infty} \sigma_n \le \limsup_{n \to \infty} s_n$

STEP 1: Let N be given, and suppose M > N. Let's show that

$$\sup \{\sigma_n \mid n > M\} \le \frac{1}{M} (s_1 + \dots + s_N) + \sup \{s_n \mid n > N\}$$

Notice that for all n > M, we have

$$\sigma_n = \frac{1}{n} (s_1 + \dots + s_n) = \frac{s_1 + \dots + s_N}{n} + \frac{s_{N+1} + \dots + s_n}{n}$$

Notice there are n - (N + 1) + 1 = n - N terms in $s_{N+1} + \cdots + s_n$. Moreover, by definition of sup, each term $s_{N+1}, s_{N+2}, \ldots, s_n$ is $\leq \sup \{s_n \mid n > N\}$, and therefore we get:

$$\sigma_n \leq \frac{s_1 + \dots + s_N}{n} + \frac{n - N}{n} \sup \left\{ s_n \mid n > N \right\}$$
$$\leq \frac{s_1 + \dots + s_N}{M} + \sup \left\{ s_n \mid n > N \right\}$$

(Here we used $n > M \Rightarrow \frac{1}{n} < \frac{1}{M}$)

Since the right-hand-side doesn't depend on n, we therefore get:

$$\sup \left\{ \sigma_n \mid n > M \right\} \le \frac{s_1 + \dots + s_N}{M} + \sup \left\{ s_n \mid n > N \right\} \checkmark$$

STEP 2: Now be careful: *First* let $M \to \infty$ to get:

$$\limsup_{n \to \infty} \sigma_n = \lim_{M \to \infty} \sup \left\{ \sigma_n \mid n > M \right\}$$
$$\leq \lim_{M \to \infty} \frac{1}{M} \left(s_1 + s_2 + \dots + s_N \right) + \sup \left\{ s_n \mid n > N \right\}$$
$$= \lim_{M \to \infty} \frac{1}{M} \left(s_1 + s_2 + \dots + s_N \right) + \lim_{M \to \infty} \sup \left\{ s_n \mid n > N \right\}$$

But since N is fixed, $s_1 + s_2 + \cdots + s_N$ doesn't depend on M, and so

$$\lim_{M \to \infty} \frac{1}{M} \left(s_1 + s_2 + \dots + s_N \right) = 0$$

And moreover $\{s_n \mid n > N\}$ is constant with respect to M, and so

$$\lim_{M \to \infty} \sup \{ s_n \mid n > N \} = \sup \{ s_n \mid n > N \}$$

Therefore we get:

$$\limsup_{n \to \infty} \sigma_n \le \sup \{ s_n \mid n > N \}$$

But since the left-hand-side doesn't depend on N, we can let N go to ∞ to get:

$$\limsup_{n \to \infty} \sigma_n \le \lim_{N \to \infty} \sup \left\{ s_n \mid n > N \right\} = \limsup_{N \to \infty} s_n \checkmark$$

STEP 3: Now let's show

$$\liminf_{n \to \infty} \sigma_n \ge \liminf_{n \to \infty} s_n$$

As before, let N be given and suppose M > N, then if n > M, we get

$$\sigma_n = \frac{1}{n} (s_1 + \dots + s_n)$$

$$= \underbrace{\frac{s_1 + \dots + s_N}{n}}_{\geq 0} + \underbrace{\frac{s_{N+1} + \dots + s_n}{n}}_{\geq 0}$$

$$\geq \frac{\frac{s_{N+1} + \dots + s_n}{n}}{n}$$

$$\geq \left(\frac{n - N}{n}\right) \inf \{s_n \mid n > N\}$$

$$= \left(1 - \frac{N}{n}\right) \inf \{s_n \mid n > N\}$$

$$\geq \left(1 - \frac{N}{M}\right) \inf \{s_n \mid n > N\}$$

But since the right-hand-side doesn't depend on n, we can take inf of the left side over n > M to get:

$$\inf \left\{ \sigma_n \mid n > M \right\} \ge \left(1 - \frac{N}{M} \right) \inf \left\{ s_n \mid n > N \right\}$$

And taking $M \to \infty$, we get

$$\liminf_{n \to \infty} \sigma_n = \lim_{M \to \infty} \inf \left\{ \sigma_n \mid n > M \right\}$$
$$\geq \lim_{M \to \infty} \left(1 - \frac{N}{M} \right) \inf \left\{ s_n \mid n > N \right\}$$
$$= \inf \left\{ s_n \mid n > N \right\}$$

Since the left hand side doesn't depend on N, can take $N \to \infty$ on the right hand side, we get:

$$\liminf_{n \to \infty} \sigma_n \ge \lim_{N \to \infty} \inf \{ s_n \mid n > N \} = \liminf_{n \to \infty} s_n \checkmark$$

12.12(B)

If $\lim_{n\to\infty} s_n = L$, then we get:

$$L = \liminf_{n \to \infty} s_n \le \liminf_{n \to \infty} \sigma_n \le \limsup_{n \to \infty} \sigma_n \le \limsup_{n \to \infty} s_n = L$$

Therefore

$$\liminf_{n \to \infty} s_n = \limsup_{n \to \infty} s_n = L$$

So by the lim sup squeeze theorem, we have

$$\lim_{n \to \infty} s_n = L\checkmark$$

12.12(C)

Let $(s_n) = (-1)^n$, then $\lim_{n\to\infty} s_n$ doesn't exist, but

$$\sigma_n = \frac{1}{n} (s_1 + s_2 + \dots + s_n)$$

= $\frac{1}{n} (-1 + 1 - 1 + 1 - 1 + 1 + \dots + (-1)^n)$
= $\frac{a_n}{n}$

Where a_n is either 0 (if n is even) or 1 if n is odd, but then by the squeeze theorem, we get that $\sigma_n \to 0$ as $n \to \infty \checkmark$

Note: Strictly speaking we don't have $s_n \ge 0$ here, so if you want to modify this, you can simply let $s_n = \frac{(-1)^n + 1}{2} = 0, 1, 0, 1, \ldots$, then s_n doesn't converge, but σ_n converges to $\frac{1}{2}$

12.14(A)

Let $s_n = n!$, then:

$$\left|\frac{s_{n+1}}{s_n}\right| = \frac{(n+1)!}{n!} = n+1$$

Therefore:

$$\liminf_{n \to \infty} \left| \frac{s_{n+1}}{s_n} \right| = \lim_{n \to \infty} n + 1 = \infty$$

So by the Pre-Root test, we have:

$$\liminf_{n \to \infty} (n!)^{\frac{1}{n}} = \liminf_{n \to \infty} |s_n|^{\frac{1}{n}} \ge \liminf_{n \to \infty} \left| \frac{s_{n+1}}{s_n} \right| = \infty$$

Therefore

$$\lim_{n \to \infty} (n!)^{\frac{1}{n}} = \infty$$

12.14(B)

First of all,

$$\frac{1}{n} \left(n! \right)^{\frac{1}{n}} = \left(\frac{n!}{n^n} \right)^{\frac{1}{n}}$$

So let $s_n = \frac{n!}{n^n}$, then:

$$\left|\frac{s_{n+1}}{s_n}\right| = \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}}$$
$$= \frac{(n+1)!}{n!} \frac{n^n}{(n+1)^{n+1}}$$
$$= (n+1)\frac{n^n}{(n+1)^{n+1}}$$
$$= \frac{n^n}{(n+1)^n}$$
$$= \left(\frac{n}{n+1}\right)^n$$
$$= \left(\frac{n}{n+1}\right)^n$$
$$= \left(\frac{1}{(1+\frac{1}{n})^n}\right)^n$$
$$= \frac{1}{(1+\frac{1}{n})^n}$$
$$\to \frac{1}{e}$$

Therefore:

$$\lim_{n \to \infty} \left| \frac{s_{n+1}}{s_n} \right| = \frac{1}{e}$$

So by the Corollary of the Pre-Root Test, we have

$$\lim_{n \to \infty} \frac{1}{n} (n!)^{\frac{1}{n}} = \lim_{n \to \infty} |s_n|^{\frac{1}{n}} = \frac{1}{e}$$
14.6(A)

Since (b_n) is bounded, there is M such that for all $n, |b_n| \leq M$

Since $\sum |a_n|$ converges, by the Cauchy criterion with $\frac{\epsilon}{M}$ there is N such that for all $n \ge m > N$, we have $\sum_{k=m}^n |a_k| < \frac{\epsilon}{M}$. But then, for the same N, if $n \ge m > N$, we have:

$$\left|\sum_{k=m}^{n} a_k b_k\right| \le \sum_{k=m}^{n} |a_k b_k| = \sum_{k=m}^{n} |a_k| |b_k| \le \sum_{k=m}^{n} |a_k| M = M \sum_{k=m}^{n} |a_k| < M\left(\frac{\epsilon}{M}\right) = \epsilon \checkmark$$

Hence, by the Cauchy criterion, $\sum a_n b_b$ converges.