
HOMEWORK 6 − SELECTED BOOK SOLUTIONS

12.8

STEP 1: Let N be given, then for all n > N , by definition of sup

sn ≤ sup {sn | n > N} tn ≤ sup {tn | n > N}

Therefore, since sn ≥ 0 and tn ≥ 0, we get:

sntn ≤ sup ({sn | n > N}) tn ≤ (sup {sn | n > N}) sup {tn | n > N}

Now taking the sup over n > N , we get:

sup {sntn | n > N} ≤ sup {sn | n > N} sup {tn | n > N}

STEP 2: Now taking the limit as N → ∞ in the above, we get

lim sup
n→∞

sntn
DEF
= lim

N→∞
sup {sntn | n > N}

STEP1
≤ lim

N→∞
sup {sn | n > N} sup {tn | n > N}

= lim
N→∞

sup {sn | n > N} lim
N→∞

sup {tn | n > N}

=

(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
✓
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12.12(a)

The middle inequality follows because lim inf ≤ lim sup, so let’s first
show the third inequality, which is:

lim sup
n→∞

σn ≤ lim sup
n→∞

sn

STEP 1: Let N be given, and suppose M > N . Let’s show that

sup {σn | n > M} ≤ 1

M
(s1 + · · ·+ sN) + sup {sn | n > N}

Notice that for all n > M , we have

σn =
1

n
(s1 + · · ·+ sn) =

s1 + · · ·+ sN
n

+
sN+1 + · · ·+ sn

n

Notice there are n − (N + 1) + 1 = n − N terms in sN+1 + · · · +
sn. Moreover, by definition of sup, each term sN+1, sN+2, . . . , sn is
≤ sup {sn | n > N}, and therefore we get:

σn ≤s1 + · · ·+ sN
n

+
n−N

n
sup {sn | n > N}

≤s1 + · · ·+ sN
M

+ sup {sn | n > N}

(Here we used n > M ⇒ 1
n < 1

M )

Since the right-hand-side doesn’t depend on n, we therefore get:

sup {σn | n > M} ≤ s1 + · · ·+ sN
M

+ sup {sn | n > N}✓

STEP 2: Now be careful: First let M → ∞ to get:
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lim sup
n→∞

σn = lim
M→∞

sup {σn | n > M}

≤ lim
M→∞

1

M
(s1 + s2 + · · ·+ sN) + sup {sn | n > N}

= lim
M→∞

1

M
(s1 + s2 + · · ·+ sN) + lim

M→∞
sup {sn | n > N}

But since N is fixed, s1 + s2 + · · ·+ sN doesn’t depend on M , and so

lim
M→∞

1

M
(s1 + s2 + · · ·+ sN) = 0

And moreover {sn | n > N} is constant with respect to M , and so

lim
M→∞

sup {sn | n > N} = sup {sn | n > N}

Therefore we get:

lim sup
n→∞

σn ≤ sup {sn | n > N}

But since the left-hand-side doesn’t depend on N , we can let N go to
∞ to get:

lim sup
n→∞

σn ≤ lim
N→∞

sup {sn | n > N} = lim sup
N→∞

sn✓

STEP 3: Now let’s show

lim inf
n→∞

σn ≥ lim inf
n→∞

sn



4 HOMEWORK 6 − SELECTED BOOK SOLUTIONS

As before, let N be given and suppose M > N , then if n > M , we get

σn =
1

n
(s1 + · · ·+ sn)

=
s1 + · · ·+ sN

n︸ ︷︷ ︸
≥0

+
sN+1 + · · ·+ sn

n

≥sN+1 + · · ·+ sn
n

≥
(
n−N

n

)
inf {sn | n > N}

=

(
1− N

n

)
inf {sn | n > N}

≥
(
1− N

M

)
inf {sn | n > N}

But since the right-hand-side doesn’t depend on n, we can take inf of
the left side over n > M to get:

inf {σn | n > M} ≥
(
1− N

M

)
inf {sn | n > N}

And taking M → ∞, we get

lim inf
n→∞

σn = lim
M→∞

inf {σn | n > M}

≥ lim
M→∞

(
1− N

M

)
inf {sn | n > N}

= inf {sn | n > N}
Since the left hand side doesn’t depend on N , can take N → ∞ on the
right hand side, we get:

lim inf
n→∞

σn ≥ lim
N→∞

inf {sn | n > N} = lim inf
n→∞

sn✓
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12.12(b)

If limn→∞ sn = L, then we get:

L = lim inf
n→∞

sn ≤ lim inf
n→∞

σn ≤ lim sup
n→∞

σn ≤ lim sup
n→∞

sn = L

Therefore

lim inf
n→∞

sn = lim sup
n→∞

sn = L

So by the lim sup squeeze theorem, we have

lim
n→∞

sn = L✓

12.12(c)

Let (sn) = (−1)n, then limn→∞ sn doesn’t exist, but

σn =
1

n
(s1 + s2 + · · ·+ sn)

=
1

n
(−1 + 1− 1 + 1− 1 + 1 + · · ·+ (−1)n)

=
an
n

Where an is either 0 (if n is even) or 1 if n is odd, but then by the
squeeze theorem, we get that σn → 0 as n → ∞ ✓

Note: Strictly speaking we don’t have sn ≥ 0 here, so if you want to

modify this, you can simply let sn = (−1)n+1
2 = 0, 1, 0, 1, . . . , then sn

doesn’t converge, but σn converges to 1
2
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12.14(a)

Let sn = n!, then:

∣∣∣∣sn+1

sn

∣∣∣∣ = (n+ 1)!

n!
= n+ 1

Therefore:

lim inf
n→∞

∣∣∣∣sn+1

sn

∣∣∣∣ = lim
n→∞

n+ 1 = ∞

So by the Pre-Root test, we have:

lim inf
n→∞

(n!)
1
n = lim inf

n→∞
|sn|

1
n ≥ lim inf

n→∞

∣∣∣∣sn+1

sn

∣∣∣∣ = ∞

Therefore

lim
n→∞

(n!)
1
n = ∞

12.14(b)

First of all,

1

n
(n!)

1
n =

(
n!

nn

) 1
n

So let sn = n!
nn , then:
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∣∣∣∣sn+1

sn

∣∣∣∣ = (n+1)!
(n+1)n+1

n!
nn

=
(n+ 1)!

n!

nn

(n+ 1)n+1

=(n+ 1)
nn

(n+ 1)n+1

=
nn

(n+ 1)n

=

(
n

n+ 1

)n

=

(
n

n
(
1 + 1

n

))n

=

(
1

1 + 1
n

)n

=
1(

1 + 1
n

)n
→1

e
Therefore:

lim
n→∞

∣∣∣∣sn+1

sn

∣∣∣∣ = 1

e

So by the Corollary of the Pre-Root Test, we have

lim
n→∞

1

n
(n!)

1
n = lim

n→∞
|sn|

1
n =

1

e

14.6(a)
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Since (bn) is bounded, there is M such that for all n, |bn| ≤ M

Since
∑

|an| converges, by the Cauchy criterion with ϵ
M there is N

such that for all n ≥ m > N , we have
∑n

k=m |ak| < ϵ
M . But then, for

the same N , if n ≥ m > N , we have:∣∣∣∣∣
n∑

k=m

akbk

∣∣∣∣∣ ≤
n∑

k=m

|akbk| =
n∑

k=m

|ak| |bk| ≤
n∑

k=m

|ak|M = M
n∑

k=m

|ak| < M
( ϵ

M

)
= ϵ✓

Hence, by the Cauchy criterion,
∑

anbb converges.
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