## HOMEWORK 6 - SELECTED BOOK SOLUTIONS

## 12.8

STEP 1: Let $N$ be given, then for all $n>N$, by definition of sup

$$
s_{n} \leq \sup \left\{s_{n} \mid n>N\right\} \quad t_{n} \leq \sup \left\{t_{n} \mid n>N\right\}
$$

Therefore, since $s_{n} \geq 0$ and $t_{n} \geq 0$, we get:

$$
s_{n} t_{n} \leq \sup \left(\left\{s_{n} \mid n>N\right\}\right) t_{n} \leq\left(\sup \left\{s_{n} \mid n>N\right\}\right) \sup \left\{t_{n} \mid n>N\right\}
$$

Now taking the sup over $n>N$, we get:

$$
\sup \left\{s_{n} t_{n} \mid n>N\right\} \leq \sup \left\{s_{n} \mid n>N\right\} \sup \left\{t_{n} \mid n>N\right\}
$$

STEP 2: Now taking the limit as $N \rightarrow \infty$ in the above, we get

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} s_{n} t_{n} & \stackrel{D E F}{=} \lim _{N \rightarrow \infty} \sup \left\{s_{n} t_{n} \mid n>N\right\} \\
& \left.\begin{array}{l}
S T E P 1 \\
\\
\\
\\
\\
\\
\\
\\
\\
= \\
\lim _{N \rightarrow \infty} \sup \left\{s_{n} \mid n>N\right\} \sup \left\{t_{n} \mid n>N\right\} \\
\left.\limsup _{n \rightarrow \infty} s_{n}\right)\left(s_{n} \mid n>N\right\} \lim _{N \rightarrow \infty} \sup \left\{t_{n} \mid n>N\right\}
\end{array} t_{n \rightarrow \infty}\right) \checkmark
\end{aligned}
$$

### 12.12(A)

The middle inequality follows because $\lim \inf \leq \lim$ sup, so let's first show the third inequality, which is:

$$
\limsup _{n \rightarrow \infty} \sigma_{n} \leq \limsup _{n \rightarrow \infty} s_{n}
$$

STEP 1: Let $N$ be given, and suppose $M>N$. Let's show that

$$
\sup \left\{\sigma_{n} \mid n>M\right\} \leq \frac{1}{M}\left(s_{1}+\cdots+s_{N}\right)+\sup \left\{s_{n} \mid n>N\right\}
$$

Notice that for all $n>M$, we have

$$
\sigma_{n}=\frac{1}{n}\left(s_{1}+\cdots+s_{n}\right)=\frac{s_{1}+\cdots+s_{N}}{n}+\frac{s_{N+1}+\cdots+s_{n}}{n}
$$

Notice there are $n-(N+1)+1=n-N$ terms in $s_{N+1}+\cdots+$ $s_{n}$. Moreover, by definition of sup, each term $s_{N+1}, s_{N+2}, \ldots, s_{n}$ is $\leq \sup \left\{s_{n} \mid n>N\right\}$, and therefore we get:

$$
\begin{aligned}
\sigma_{n} & \leq \frac{s_{1}+\cdots+s_{N}}{n}+\frac{n-N}{n} \sup \left\{s_{n} \mid n>N\right\} \\
& \leq \frac{s_{1}+\cdots+s_{N}}{M}+\sup \left\{s_{n} \mid n>N\right\}
\end{aligned}
$$

(Here we used $n>M \Rightarrow \frac{1}{n}<\frac{1}{M}$ )
Since the right-hand-side doesn't depend on $n$, we therefore get:

$$
\sup \left\{\sigma_{n} \mid n>M\right\} \leq \frac{s_{1}+\cdots+s_{N}}{M}+\sup \left\{s_{n} \mid n>N\right\} \checkmark
$$

STEP 2: Now be careful: First let $M \rightarrow \infty$ to get:

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \sigma_{n} & =\lim _{M \rightarrow \infty} \sup \left\{\sigma_{n} \mid n>M\right\} \\
& \leq \lim _{M \rightarrow \infty} \frac{1}{M}\left(s_{1}+s_{2}+\cdots+s_{N}\right)+\sup \left\{s_{n} \mid n>N\right\} \\
& =\lim _{M \rightarrow \infty} \frac{1}{M}\left(s_{1}+s_{2}+\cdots+s_{N}\right)+\lim _{M \rightarrow \infty} \sup \left\{s_{n} \mid n>N\right\}
\end{aligned}
$$

But since $N$ is fixed, $s_{1}+s_{2}+\cdots+s_{N}$ doesn't depend on $M$, and so

$$
\lim _{M \rightarrow \infty} \frac{1}{M}\left(s_{1}+s_{2}+\cdots+s_{N}\right)=0
$$

And moreover $\left\{s_{n} \mid n>N\right\}$ is constant with respect to $M$, and so

$$
\lim _{M \rightarrow \infty} \sup \left\{s_{n} \mid n>N\right\}=\sup \left\{s_{n} \mid n>N\right\}
$$

Therefore we get:

$$
\limsup _{n \rightarrow \infty} \sigma_{n} \leq \sup \left\{s_{n} \mid n>N\right\}
$$

But since the left-hand-side doesn't depend on $N$, we can let $N$ go to $\infty$ to get:

$$
\limsup _{n \rightarrow \infty} \sigma_{n} \leq \lim _{N \rightarrow \infty} \sup \left\{s_{n} \mid n>N\right\}=\limsup _{N \rightarrow \infty} s_{n} \checkmark
$$

STEP 3: Now let's show

$$
\liminf _{n \rightarrow \infty} \sigma_{n} \geq \liminf _{n \rightarrow \infty} s_{n}
$$

As before, let $N$ be given and suppose $M>N$, then if $n>M$, we get

$$
\begin{aligned}
\sigma_{n} & =\frac{1}{n}\left(s_{1}+\cdots+s_{n}\right) \\
& =\underbrace{\frac{s_{1}+\cdots+s_{N}}{n}}_{\geq 0}+\frac{s_{N+1}+\cdots+s_{n}}{n} \\
& \geq \frac{s_{N+1}+\cdots+s_{n}}{n} \\
& \geq\left(\frac{n-N}{n}\right) \inf \left\{s_{n} \mid n>N\right\} \\
& =\left(1-\frac{N}{n}\right) \inf \left\{s_{n} \mid n>N\right\} \\
& \geq\left(1-\frac{N}{M}\right) \inf \left\{s_{n} \mid n>N\right\}
\end{aligned}
$$

But since the right-hand-side doesn't depend on $n$, we can take inf of the left side over $n>M$ to get:

$$
\inf \left\{\sigma_{n} \mid n>M\right\} \geq\left(1-\frac{N}{M}\right) \inf \left\{s_{n} \mid n>N\right\}
$$

And taking $M \rightarrow \infty$, we get

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \sigma_{n} & =\lim _{M \rightarrow \infty} \inf \left\{\sigma_{n} \mid n>M\right\} \\
& \geq \lim _{M \rightarrow \infty}\left(1-\frac{N}{M}\right) \inf \left\{s_{n} \mid n>N\right\} \\
& =\inf \left\{s_{n} \mid n>N\right\}
\end{aligned}
$$

Since the left hand side doesn't depend on $N$, can take $N \rightarrow \infty$ on the right hand side, we get:

$$
\liminf _{n \rightarrow \infty} \sigma_{n} \geq \lim _{N \rightarrow \infty} \inf \left\{s_{n} \mid n>N\right\}=\liminf _{n \rightarrow \infty} s_{n} \checkmark
$$

If $\lim _{n \rightarrow \infty} s_{n}=L$, then we get:

$$
L=\liminf _{n \rightarrow \infty} s_{n} \leq \liminf _{n \rightarrow \infty} \sigma_{n} \leq \limsup _{n \rightarrow \infty} \sigma_{n} \leq \limsup _{n \rightarrow \infty} s_{n}=L
$$

Therefore

$$
\liminf _{n \rightarrow \infty} s_{n}=\limsup _{n \rightarrow \infty} s_{n}=L
$$

So by the limsup squeeze theorem, we have

$$
\lim _{n \rightarrow \infty} s_{n}=L \checkmark
$$

### 12.12(c)

Let $\left(s_{n}\right)=(-1)^{n}$, then $\lim _{n \rightarrow \infty} s_{n}$ doesn't exist, but

$$
\begin{aligned}
\sigma_{n} & =\frac{1}{n}\left(s_{1}+s_{2}+\cdots+s_{n}\right) \\
& =\frac{1}{n}\left(-1+1-1+1-1+1+\cdots+(-1)^{n}\right) \\
& =\frac{a_{n}}{n}
\end{aligned}
$$

Where $a_{n}$ is either 0 (if $n$ is even) or 1 if $n$ is odd, but then by the squeeze theorem, we get that $\sigma_{n} \rightarrow 0$ as $n \rightarrow \infty \checkmark$

Note: Strictly speaking we don't have $s_{n} \geq 0$ here, so if you want to modify this, you can simply let $s_{n}=\frac{(-1)^{n}+1}{2}=0,1,0,1, \ldots$, then $s_{n}$ doesn't converge, but $\sigma_{n}$ converges to $\frac{1}{2}$

> 12.14(A)

Let $s_{n}=n!$, then:

$$
\left|\frac{s_{n+1}}{s_{n}}\right|=\frac{(n+1)!}{n!}=n+1
$$

Therefore:

$$
\liminf _{n \rightarrow \infty}\left|\frac{s_{n+1}}{s_{n}}\right|=\lim _{n \rightarrow \infty} n+1=\infty
$$

So by the Pre-Root test, we have:

$$
\liminf _{n \rightarrow \infty}(n!)^{\frac{1}{n}}=\liminf _{n \rightarrow \infty}\left|s_{n}\right|^{\frac{1}{n}} \geq \liminf _{n \rightarrow \infty}\left|\frac{s_{n+1}}{s_{n}}\right|=\infty
$$

Therefore

$$
\lim _{n \rightarrow \infty}(n!)^{\frac{1}{n}}=\infty
$$

12.14(в)

First of all,

$$
\frac{1}{n}(n!)^{\frac{1}{n}}=\left(\frac{n!}{n^{n}}\right)^{\frac{1}{n}}
$$

So let $s_{n}=\frac{n!}{n^{n}}$, then:

$$
\begin{aligned}
\left|\frac{s_{n+1}}{s_{n}}\right| & =\frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}} \\
& =\frac{(n+1)!}{n!} \frac{n^{n}}{(n+1)^{n+1}} \\
& =(n+1) \frac{n^{n}}{(n+1)^{n+1}} \\
& =\frac{n^{n}}{(n+1)^{n}} \\
& =\left(\frac{n}{n+1}\right)^{n} \\
& =\left(\frac{n}{n\left(1+\frac{1}{n}\right)}\right)^{n} \\
& =\left(\frac{1}{1+\frac{1}{n}}\right)^{n} \\
& =\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \\
& \rightarrow \frac{1}{e}
\end{aligned}
$$

Therefore:

$$
\lim _{n \rightarrow \infty}\left|\frac{s_{n+1}}{s_{n}}\right|=\frac{1}{e}
$$

So by the Corollary of the Pre-Root Test, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n}(n!)^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left|s_{n}\right|^{\frac{1}{n}}=\frac{1}{e}
$$

14.6(A)

Since $\left(b_{n}\right)$ is bounded, there is $M$ such that for all $n,\left|b_{n}\right| \leq M$
Since $\sum\left|a_{n}\right|$ converges, by the Cauchy criterion with $\frac{\epsilon}{M}$ there is $N$ such that for all $n \geq m>N$, we have $\sum_{k=m}^{n}\left|a_{k}\right|<\frac{\epsilon}{M}$. But then, for the same $N$, if $n \geq m>N$, we have:

$$
\left|\sum_{k=m}^{n} a_{k} b_{k}\right| \leq \sum_{k=m}^{n}\left|a_{k} b_{k}\right|=\sum_{k=m}^{n}\left|a_{k}\right|\left|b_{k}\right| \leq \sum_{k=m}^{n}\left|a_{k}\right| M=M \sum_{k=m}^{n}\left|a_{k}\right|<M\left(\frac{\epsilon}{M}\right)=\epsilon \checkmark
$$

Hence, by the Cauchy criterion, $\sum a_{n} b_{b}$ converges.

