MATH S4062 - HOMEWORK 6

- Chapter 9: $6,8,14(\mathrm{a})(\mathrm{d})$

Please also do the two Additional Problems below:
Additional Problem 1: Let P be the set of polynomials on $[0,1]$ with the supremum norm

$$
\|p\|=\sup _{x \in[0,1]}|p(x)|
$$

And let $T: P \rightarrow P$ be defined by $T(p)=p^{\prime}$
Show that there is no C such that $\|T(p)\| \leq C\|p\|$. This is an example of an unbounded linear transformation.

Additional Problem 2: Use the definition of a derivative learned in this course to give a new proof of the product rule. That is, if $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable at x, then so if $f g$ and

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

[^0]
Hints:

Problem 6: For $(x, y) \neq(0,0)$, you can just use the differentiation rules from calculus. For $(x, y)=(0,0)$, you need to use the definition of $D_{1} f=\frac{\partial f}{\partial x}$ and $D_{2} f=\frac{\partial f}{\partial y}$ as limits. To show it's not continuous at $(0,0)$, consider the path (x, x)

Problem 8: Here Rudin means that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. For this consider $\phi(t)=f(x+t y)$ and you can use the usual rules from Calculus.

Problem 14: Just do (a) and (d) here. For (a), calculate $\frac{\partial f}{\partial x_{1}}$ both for $(x, y) \neq(0,0)$ (differentiation rules) and for $(x, y)=0$ (limit definition) and same with x_{2}. For (d), if f were differentiable at $(0,0)$ then we would have

$$
f(x, y)=f(0,0)+\frac{\partial f}{\partial x}(0,0) x+\frac{\partial f}{\partial y}(0,0) y+r(x, y)
$$

With $\lim _{(x, y) \rightarrow(0,0)} \frac{|r(x, y)|}{\sqrt{x^{2}+y^{2}}}=0$
Use the equation above to solve for $r(x, y)$ and show that the limit is not 0 by considering the path (x, x)

Additional Problem 1: All you need to do is to find a sequence of (easy) polynomials $p_{n} \in P$ such that $\lim _{n \rightarrow \infty} \frac{\left\|T\left(p_{n}\right)\right\|}{\left\|p_{n}\right\|}=\infty$

Additional Problem 2: Start with $(f g)(x+h)=f(x+h) g(x+h)$ and write this in terms of $f(x) g(x)$.

Note: For a solution to this, check out Cool Product Rule proof

[^0]: Date: Due: Friday, July 29, 2022.

