MATH 409 - HOMEWORK 7

Reading: Sections 15 and 17. In section 15, ignore the proof of the alternating series test. There will be more section 17 problems next time.

- Section 15: 3, 6 (see Note), AP1, AP2, AP3, AP4, AP5, AP6 (optional: AP8)
- Section 17: 9, 10(a)(b) (see Note), AP7

Note: For Problem 6(b), please show the result directly, without using Exercise 14.7

Note: For Problem 10(a), please do this using both the sequence definition and the $\epsilon-\delta$ definition.

Additional Problem 1: Prove the Integral Test:

Integral Test:

If $f(x) \geq 0$ is decreasing on $[1, \infty)$, then:
(1) $\int_{1}^{\infty} f(x) d x=\infty \Rightarrow \sum_{n=1}^{\infty} f(n)=\infty$
(2) $\int_{1}^{\infty} f(x) d x<\infty \Rightarrow \sum_{n=1}^{\infty} f(n)$ converges

Additional Problem 2: There is an important inequality for series called the Cauchy-Schwarz inequality.

Date: Due: Friday, October 22, 2021.

Cauchy-Schwarz Inequality:

$$
\left|\sum_{n=1}^{\infty} a_{n} b_{n}\right| \leq\left(\sum_{n=1}^{\infty}\left(a_{n}\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{\infty}\left(b_{n}\right)^{2}\right)^{\frac{1}{2}}
$$

Use the Cauchy-Schwarz inequality to prove the following:
(a) If $a_{n} \geq 0$ and $\sum a_{n}$ converges, then the following series converges

$$
\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}
$$

(b) If a_{n} and $b_{n} \geq 0$ both $\sum a_{n}$ and $\sum b_{n}$ converge, then the following series converges

$$
\sum_{n=1}^{\infty} \sqrt{a_{n} b_{n}}
$$

Note: The following video covers part (a): bprp vs. Dr Peyam Battle
Aside: If you want to see a slick proof of the Cauchy-Schwarz inequality (in its general form), check out: Cauchy-Schwarz Proof

Additional Problem 3: Let $\left(s_{n}\right)$ be the sequence defined by

$$
s_{n}=\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)=\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\int_{1}^{n} \frac{1}{x} d x
$$

(a) Show that $\left(s_{n}\right)$ is decreasing
(b) Show that $0 \leq s_{n} \leq 1$ for all n
(c) Conclude that $\left(s_{n}\right)$ converges.

Cultural Note: The limit of $\left(s_{n}\right)$ is denoted by γ and is called the Euler-Mascheroni constant. Even though $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$ and $\ln (n) \rightarrow$ ∞, this problem shows that the difference between the two is actually finite! It is not known if γ is rational or not.

Additional Problem 4: There is another comparison test used frequently in Calculus:

Limit Comparison Test:

If $a_{n}, b_{n} \geq 0$ and $b_{n} \neq 0$ for all n and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

with $0<c<\infty$, then either both $\sum a_{n}$ and $\sum b_{n}$ converge, or both diverge
(a) Apply the limit comparison test to determine if the following series converges or diverges:

$$
\sum_{n=1}^{\infty} \frac{n^{3}-1}{n^{4}+3}
$$

(b) Prove the limit comparison test

Additional Problem 5: Recall the definition of e from last time:

Definition:

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!}
$$

Show that e is irrational (see hints)
Additional Problem 6: Calculate the sum of the following series (see hints)

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Definition:

$f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz if there is a constant $C>0$ such that for all a and b, we have

$$
|f(b)-f(a)| \leq C|b-a|
$$

Additional Problem 7: Show that if f is Lipschitz then f is continuous

Optional Additional Problem 8:

(a) Prove the following generalization of the Limit Comparison Test (from AP4):

Limsup Comparison Test:

If $a_{n}, b_{n} \geq 0$ and $b_{n} \neq 0$ for all n and

$$
\limsup _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

with $0 \leq c<\infty$, then if $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
(b) Use (a) to figure out if the following series converges or diverges

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}+1}{n^{2}}
$$

Observe that you cannot apply the regular limit comparison test to this!

Hints:

15.6(b): Use the fact that for large $n, a_{n}<1$ (why?) and therefore $\left(a_{n}\right)^{2} \leq a_{n}$. It's best to use the Cauchy criterion in my opinion.
17.9(a)(d) Do the usual trick of assuming $\left|x-x_{0}\right|<1$ and therefore

$$
|x|=\left|x-x_{0}+x_{0}\right| \leq\left|x-x_{0}\right|+\left|x_{0}\right|=1+\left|x_{0}\right|
$$

Yes, the constant gets unusually big for $(d) \odot$
17.10(a) I did a very similar problem in the following video: Not continuous

AP1: It's literally the same proof as the one in lecture (or in the book), except you replace $\frac{1}{x}$ by $f(x)$ and $\frac{1}{n}$ by $f(n)$. The only other minor replacement is that, in the proof of convergence, instead of doing $1+$ Rectangles 2 to n , you do $f(1)+$ Rectangles 2 to n

AP3: For (a), show $s_{n+1}-s_{n}<0$; a picture might be helpful here. For (b), since $\left(s_{n}\right)$ is decreasing, $s_{n} \leq s_{1}$. Moreover, notice that in the proof of the integral test, we showed something stronger, namely that $\sum_{k=1}^{n} \frac{1}{k} \geq \int_{1}^{n+1} \frac{1}{x} d x$

AP4(b): Since $c>0$, let $\epsilon>0$ be such that $\epsilon<c$, and then use the definition of the limit to show that $(c-\epsilon) b_{n} \leq a_{n} \leq(c+\epsilon) b_{n}$ and then
use the usual comparison test.
AP5: First, with $s_{n}=\sum_{k=0}^{n} \frac{1}{k!}$, show that:

$$
\begin{aligned}
e-s_{n} & =\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\ldots \\
& <\frac{1}{(n+1)!}\left(1+\frac{1}{n+1}+\frac{1}{(n+1)^{2}}+\ldots\right) \quad \text { (Geometric series) } \\
& =\frac{1}{n!n}
\end{aligned}
$$

Hence $0<e-s_{n}<\frac{1}{(n!) n}$
Now if e were rational, then $e=\frac{p}{q}$ where $p, q>0$ are integers.
Then show that $(q!) e$ is an integer and that

$$
(q!) s_{q}=q!\left(1+1+\frac{1}{2!}+\cdots+\frac{1}{q!}\right)
$$

is an integer, and conclude $q!\left(e-s_{q}\right)$ is an integer.
On the other hand, show using the above with $n=q$ that

$$
0<(q!)\left(e-s_{q}\right)<\frac{1}{q}
$$

And find a (juicy) contradiction.
Note: You can find solutions in this video: e is irrational
AP 6: Use the following formula with $f(x)=x$

Parseval's Identity:

$$
\begin{aligned}
& \text { If } A_{n}=\left(\frac{2}{\pi}\right) \int_{0}^{\pi} f(x) \sin (n x) d x \\
& \text { Then } \sum_{n=1}^{\infty}\left(A_{n}\right)^{2}=\left(\frac{2}{\pi}\right) \int_{0}^{\pi}(f(x))^{2} d x
\end{aligned}
$$

For this, first calculate A_{n} using integration by parts, and then plug your formula for A_{n} in the sum above.

Note: You can find solutions in this video: Sum of $\frac{1}{n^{2}}$

