
MATH 409 − HOMEWORK 7

Reading: Sections 15 and 17. In section 15, ignore the proof of the
alternating series test. There will be more section 17 problems next
time.

• Section 15: 3, 6 (see Note), AP1, AP2, AP3, AP4, AP5, AP6
(optional: AP8)

• Section 17: 9, 10(a)(b) (see Note), AP7

Note: For Problem 6(b), please show the result directly, without using
Exercise 14.7

Note: For Problem 10(a), please do this using both the sequence def-
inition and the ϵ− δ definition.

Additional Problem 1: Prove the Integral Test:

Integral Test:

If f(x) ≥ 0 is decreasing on [1,∞), then:

(1)
∫∞
1 f(x)dx = ∞ ⇒

∑∞
n=1 f(n) = ∞

(2)
∫∞
1 f(x)dx < ∞ ⇒

∑∞
n=1 f(n) converges

Additional Problem 2: There is an important inequality for series
called the Cauchy-Schwarz inequality.

Date: Due: Friday, October 22, 2021.
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Cauchy-Schwarz Inequality:∣∣∣∣∣
∞∑
n=1

anbn

∣∣∣∣∣ ≤
( ∞∑

n=1

(an)
2

) 1
2
( ∞∑

n=1

(bn)
2

) 1
2

Use the Cauchy-Schwarz inequality to prove the following:

(a) If an ≥ 0 and
∑

an converges, then the following series con-
verges

∞∑
n=1

√
an
n

(b) If an and bn ≥ 0 both
∑

an and
∑

bn converge, then the follow-
ing series converges

∞∑
n=1

√
anbn

Note: The following video covers part (a): bprp vs. Dr Peyam Battle

Aside: If you want to see a slick proof of the Cauchy-Schwarz inequal-
ity (in its general form), check out: Cauchy-Schwarz Proof

Additional Problem 3: Let (sn) be the sequence defined by

sn =

(
n∑

k=1

1

k

)
− ln(n) =

(
n∑

k=1

1

k

)
−
∫ n

1

1

x
dx

(a) Show that (sn) is decreasing

(b) Show that 0 ≤ sn ≤ 1 for all n

https://www.youtube.com/watch?v=nKqTKnLqaJs
https://www.youtube.com/watch?v=SPCYCVa5DmM
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(c) Conclude that (sn) converges.

Cultural Note: The limit of (sn) is denoted by γ and is called the
Euler-Mascheroni constant. Even though

∑∞
n=1

1
n = ∞ and ln(n) →

∞, this problem shows that the difference between the two is actually
finite! It is not known if γ is rational or not.

Additional Problem 4: There is another comparison test used fre-
quently in Calculus:

Limit Comparison Test:

If an, bn ≥ 0 and bn ̸= 0 for all n and

lim
n→∞

an
bn

= c

with 0 < c < ∞, then either both
∑

an and
∑

bn converge, or
both diverge

(a) Apply the limit comparison test to determine if the following
series converges or diverges:

∞∑
n=1

n3 − 1

n4 + 3

(b) Prove the limit comparison test

Additional Problem 5: Recall the definition of e from last time:

Definition:

e =
∞∑
n=0

1

n!
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Show that e is irrational (see hints)

Additional Problem 6: Calculate the sum of the following series
(see hints)

∞∑
n=1

1

n2
=

π2

6

Definition:

f : R → R is Lipschitz if there is a constant C > 0 such that for
all a and b, we have

|f(b)− f(a)| ≤ C |b− a|

Additional Problem 7: Show that if f is Lipschitz then f is contin-
uous

Optional Additional Problem 8:

(a) Prove the following generalization of the Limit Comparison Test
(from AP4):

Limsup Comparison Test:

If an, bn ≥ 0 and bn ̸= 0 for all n and

lim sup
n→∞

an
bn

= c

with 0 ≤ c < ∞, then if
∑

bn converges, then
∑

an con-
verges.

(b) Use (a) to figure out if the following series converges or diverges
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∞∑
n=1

(−1)n + 1

n2

Observe that you cannot apply the regular limit comparison test
to this!

Hints:

15.6(b): Use the fact that for large n, an < 1 (why?) and therefore
(an)

2 ≤ an. It’s best to use the Cauchy criterion in my opinion.

17.9(a)(d) Do the usual trick of assuming |x− x0| < 1 and therefore

|x| = |x− x0 + x0| ≤ |x− x0|+ |x0| = 1 + |x0|

Yes, the constant gets unusually big for (d) ,

17.10(a) I did a very similar problem in the following video: Not con-
tinuous

AP1: It’s literally the same proof as the one in lecture (or in the
book), except you replace 1

x by f(x) and 1
n by f(n). The only other

minor replacement is that, in the proof of convergence, instead of doing
1 + Rectangles 2 to n , you do f(1) + Rectangles 2 to n

AP3: For (a), show sn+1 − sn < 0; a picture might be helpful here.
For (b), since (sn) is decreasing, sn ≤ s1. Moreover, notice that in the
proof of the integral test, we showed something stronger, namely that∑n

k=1
1
k ≥

∫ n+1

1
1
xdx

AP4(b): Since c > 0, let ϵ > 0 be such that ϵ < c, and then use the
definition of the limit to show that (c− ϵ)bn ≤ an ≤ (c+ ϵ)bn and then

https://youtu.be/rHuA-5LNAvA
https://youtu.be/rHuA-5LNAvA
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use the usual comparison test.

AP5: First, with sn =
∑n

k=0
1
k! , show that:

e− sn =
1

(n+ 1)!
+

1

(n+ 2)!
+

1

(n+ 3)!
+ . . .

<
1

(n+ 1)!

(
1 +

1

n+ 1
+

1

(n+ 1)2
+ . . .

)
(Geometric series)

=
1

n!n

Hence 0 < e− sn < 1
(n!)n

Now if e were rational, then e = p
q where p, q > 0 are integers.

Then show that (q!) e is an integer and that

(q!) sq = q!

(
1 + 1 +

1

2!
+ · · ·+ 1

q!

)
is an integer, and conclude q!(e− sq) is an integer.

On the other hand, show using the above with n = q that

0 < (q!) (e− sq) <
1

q

And find a (juicy) contradiction.

Note: You can find solutions in this video: e is irrational

AP 6: Use the following formula with f(x) = x

https://www.youtube.com/watch?v=FPHF-bkfydk
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Parseval’s Identity:

If An =

(
2

π

)∫ π

0

f(x) sin(nx)dx

Then
∞∑
n=1

(An)
2 =

(
2

π

)∫ π

0

(f(x))2 dx

For this, first calculate An using integration by parts, and then plug
your formula for An in the sum above.

Note: You can find solutions in this video: Sum of 1
n2

https://www.youtube.com/watch?v=YMleINbiNlE

