## HOMEWORK 7 - AP SOLUTIONS

AP 1
(a) Consider the partial sums:

$$
s_{n}=\sum_{k=1}^{n} f(k)=f(1)+\cdots+f(n)
$$

As before, for each $k=1, \ldots, n$ consider the rectangle with base [ $k, k+1$ ] and height $f(k)$
Then

$$
s_{n}=f(1)+\cdots+f(n)=\text { Sum of areas of } n \text { rectangles }
$$

On the other hand, since $f$ is decreasing, the above sum larger than the area under $f$ from 1 to $n+1$ that is $\int_{1}^{n+1} f(x) d x$.
And therefore

$$
s_{n}=\sum_{k=1}^{n} f(k) \geq \int_{1}^{n+1} f(x) d x=: t_{n}
$$

## However

$$
\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} \int_{1}^{n+1} f(x) d x=\int_{1}^{\infty} f(x) d x=\infty \quad \text { (By assumption) }
$$

And therefore, by comparison, $\lim _{n \rightarrow \infty} s_{n}=\infty$, meaning that $\sum_{n=1}^{\infty} f(n)=\infty$ (by definition of a series)
(b) Consider again the partial sums

$$
s_{n}=\sum_{k=1}^{n} f(k)=f(1)+\cdots+f(n)
$$

It is enough to show that $\left(s_{n}\right)$ is bounded.
This time, for each $k=1, \ldots, n$, consider the rectangle with base $[k-1, k]$ and height $f(k)$
$s_{n}=f(1)+\cdots+f(n)=$ Sum of the areas of the rectangles
Note: Since $f$ and $\int_{1}^{\infty} f(x) d x$ is only defined on $[1, \infty)$, we need to ignore the first rectangle (which has finite area anyway), so
$s_{n}=($ Rectangle 1$)+($ Rectangles 2 to n$)=f(1)+($ Rectangles 2 to n$)$
Since $f$ is decreasing, the area under the graph of $f$ from 1 to $n$ is bigger than the sum of the areas of rectangles 2 to $n$

$$
\begin{aligned}
s_{n} & \leq f(1)+\text { Area of Rectangles } 2 \text { to } \mathrm{n} \\
& \leq f(1)+\int_{1}^{n} f(x) d x \\
& \leq f(1)+\int_{1}^{\infty} f(x) d x(\text { since } f \geq 0)
\end{aligned}
$$

Therefore, with $M=: f(1)+\int_{1}^{\infty} f(x) d x$ we get $0 \leq s_{n} \leq M$
Hence $\left|s_{n}\right| \leq M$ for all $n$, and so $\left(s_{n}\right)$ is bounded, and therefore $\sum f(n)$ converges

## AP 2

(a) By Cauchy-Schwarz, we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n} & =\sum_{n=1}^{\infty} \sqrt{a_{n}}\left(\frac{1}{n}\right) \\
& \leq\left(\sum_{n=1}^{\infty}\left(\sqrt{a_{n}}\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{n=1}^{\infty} a_{n}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

However $\sum_{n=1}^{\infty} a_{n}<\infty$ by assumption, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ since it's a 2 -series, so the right-hand-side is finite, and therefore $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ is bounded, and hence converges.
(b) Again, by the Cauchy-Schwarz inequality

$$
\begin{aligned}
\sum_{n=1}^{\infty} \sqrt{a_{n}} \sqrt{b_{n}} & \leq\left(\sum_{n=1}^{\infty}\left(\sqrt{a_{n}}\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{\infty}\left(\sqrt{b_{n}}\right)^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{n=1}^{\infty} a_{n}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{\infty} b_{n}\right)^{\frac{1}{2}}
\end{aligned}
$$

But by assumption, each term on the right-hand-side is finite, and therefore $\sum_{n=1}^{\infty} \sqrt{a_{n} b_{n}}$ is bounded, and hence converges.

## AP 3

(a)

$$
\begin{aligned}
s_{n+1}-s_{n} & =\left(\sum_{k=1}^{n+1} \frac{1}{k}\right)-\int_{1}^{n+1} \frac{1}{x} d x-\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\int_{1}^{n} \frac{1}{x} d x \\
& =\left(\sum_{k=1}^{n+1} \frac{1}{k}\right)-\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\left(\int_{1}^{n+1} \frac{1}{x} d x-\int_{1}^{n} \frac{1}{x} d x\right) \\
& =\frac{1}{n+1}-\int_{n}^{n+1} \frac{1}{x} d x
\end{aligned}
$$

However, since $\frac{1}{x}$ is decreasing, we have $\frac{1}{x} \geq \frac{1}{n+1}$ on the interval $[n, n+1]$, hence the area under $f$ on $[n, n+1]$, which is $\int_{n}^{n+1} \frac{1}{x} d x$ is greater than the area of the rectangle with base $[n, n+1]$ and height $\frac{1}{n+1}$, and so

$$
s_{n+1}-s_{n}=\frac{1}{n+1}-\int_{n}^{n+1} \frac{1}{x} d x<0
$$

Hence $s_{n+1}<s_{n}$ and therefore $\left(s_{n}\right)$ is decreasing
(b) First of all, since $\left(s_{n}\right)$ is decreasing, we have

$$
s_{n} \leq s_{1}=\left(\sum_{k=1}^{1} \frac{1}{n}\right)-\int_{1}^{1} \frac{1}{x} d x=1-0=1
$$

Hence $s_{n} \leq 1$.

On the other hand, by considering again the rectangles with base $[k, k+1]$ and height $\frac{1}{k}$ (for $k=1, \ldots, n$ ), we get that

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{1}{k} & =\text { Sum of areas of rectangles } \\
& \geq \text { Area of } \frac{1}{x} \text { from } 0 \text { to } n+1 \\
& =\int_{1}^{n+1} \frac{1}{x} d x \\
& >\int_{1}^{n} \frac{1}{x} d x
\end{aligned}
$$

And therefore $s_{n}=\sum_{k=1}^{n} \frac{1}{k}-\int_{1}^{n} \frac{1}{x} d x>0$.

Hence we conclude that $0<s_{n} \leq 1$ for all $n$.
(c) Since $\left(s_{n}\right)$ is decreasing and bounded below by $0,\left(s_{n}\right)$ converges.

AP 4
(a) Let $a_{n}=\frac{n^{3}-1}{n^{4}+3}$ and $b_{n}=\frac{n^{3}}{n^{4}}=\frac{1}{n}$. Then

$$
\frac{a_{n}}{b_{n}}=\frac{\frac{n^{3}-1}{n^{4}+3}}{\frac{1}{n}}=\frac{n\left(n^{3}-1\right)}{n^{4}+3}=\frac{n^{4}-n}{n^{4}+3} \xrightarrow{n \rightarrow \infty} 1
$$

But since $\sum b_{n}=\sum \frac{1}{n}=\infty$, by the limit comparison test, we conclude that $\sum a_{n}$ diverges as well.
(b) Since $c>0$, let $\epsilon>0$ be such that $c-\epsilon>0$, then by definition of a limit, there is $N$ such that if $n>N$, then

$$
\begin{aligned}
\left|\frac{a_{n}}{b_{n}}-c\right|<\epsilon & \Rightarrow-\epsilon<\frac{a_{n}}{b_{n}}-c<\epsilon \\
& \Rightarrow c-\epsilon<\frac{a_{n}}{b_{n}}<c+\epsilon \\
& \Rightarrow(c-\epsilon) b_{n}<a_{n}<(c+\epsilon) b_{n}
\end{aligned}
$$

However, if $\sum b_{n}$ converges, then since $0 \leq a_{n}<(c+\epsilon) b_{n}$, by comparison $\sum a_{n}$ converges

And if $\sum b_{n}=\infty$, then since $a_{n}>(c-\epsilon) b_{n}$, we get that by comparison $\sum a_{n}=\infty$

STEP 1: First of all:

$$
\left.\begin{array}{rl}
e-s_{n} & =\sum_{k=0}^{\infty} \frac{1}{k!}-\sum_{k=0}^{n} \frac{1}{k!} \\
& =\sum_{k=n+1}^{\infty} \frac{1}{k!} \\
& =\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\ldots \\
& =\frac{1}{(n+1)!}\left(1+\frac{(n+1)!}{(n+2)!}+\frac{(n+1)!}{(n+3)!}+\ldots\right) \\
& =\frac{1}{(n+1)!}\left(1+\frac{1}{n+2}+\frac{1}{(n+3)(n+2)}+\ldots\right) \\
& <\frac{1}{(n+1)!}\left(1+\frac{1}{n+1}+\frac{1}{(n+1)^{2}}+\ldots\right) \\
& =\frac{1}{(n+1)!}\left(1+\left(\frac{1}{n+1}\right)+\left(\frac{1}{n+1}\right){ }^{2}\right) \\
& =\frac{1}{(n+1)!}\left(\frac{1}{1-\left(\frac{1}{n+1}\right)}\right) \\
& \left.=\frac{1}{(n+1-1}\right) \\
& \left.=\frac{1}{(n+1}\right) \\
n+1+1)! \\
n+1) \\
n+1 \\
n+1
\end{array}\right)
$$

Therefore $e-s_{n}<\frac{1}{n!}\left(\frac{1}{n}\right)$ but also $e-s_{n}=\sum_{k=n+1}^{\infty} \frac{1}{k!}>0$ and therefore

$$
0<e-s_{n}<\frac{1}{n!n}
$$

STEP 2: Now suppose $e=\frac{p}{q}$, where $p, q>0$ since $e>0$. But then

$$
q!e=q!\left(\frac{p}{q}\right)=\left(\frac{q!}{q}\right) p=(q-1)(q-2) \ldots(1) p, \text { which is an integer }
$$

And also

$$
\begin{aligned}
q!s_{q} & =q!\left(1+1+\frac{1}{2!}+\cdots+\frac{1}{q!}\right) \\
& =q!+q!+\frac{q!}{2!}+\cdots+\frac{q!}{q!} \\
& =q!+q!+q(q-1) \ldots(3)+\cdots+1 \text { is an integer }
\end{aligned}
$$

Therefore $q!\left(e-s_{q}\right)=q!e-q!s_{q}$ is an integer, being the difference of two integers.

STEP 3: However, in STEP 1 with $n=q \geq 1$, we get that

$$
0<e-s_{q}<\frac{1}{q!q} \Rightarrow 0<q!\left(e-s_{q}\right)<\frac{1}{q} \leq 1 \Rightarrow 0<q!\left(e-s_{q}\right)<1
$$

But then $q!\left(e-s_{q}\right)$ is an integer between 0 and 1 , which is impossible $\Rightarrow \Leftarrow$

$$
\text { AP } 6
$$

On the one hand, using an integration by parts, we get

$$
\begin{aligned}
A_{n} & =\frac{2}{\pi}\left(\int_{0}^{\pi} x \sin (n x) d x\right) \\
& =\frac{2}{\pi}\left(\left[x\left(\frac{-\cos (n x)}{n}\right)\right]_{0}^{\pi}+\int_{0}^{\pi} \frac{\cos (n x)}{n} d x\right) \\
& =\frac{2}{\pi}\left(\frac{-\pi \cos (\pi n)}{n}+0+\left[\frac{\sin (n x)}{n^{2}}\right]_{0}^{\pi}\right) \\
& =\frac{2}{\pi}\left[\left(-\pi(-1)^{n}\right) n+0-0\right] \\
& =\frac{-2(-1)^{n}}{n}
\end{aligned}
$$

On the other hand:

$$
\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{2}{\pi}\left[\frac{x^{3}}{3}\right]_{0}^{\pi}=\left(\frac{2}{\pi}\right)\left(\frac{\pi^{3}}{3}\right)=\frac{2 \pi^{2}}{3}
$$

Therefore Parseval's Identity becomes:

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(A_{n}\right)^{2} & =\left(\frac{2}{\pi}\right) \int_{0}^{\pi} x^{2} d x \\
\sum_{n=1}^{\infty}\left(\frac{-2(-1)^{n}}{n}\right)^{2} & =\frac{2 \pi^{2}}{3} \\
\sum_{n=1}^{\infty} \frac{4}{n^{2}} & =\frac{2 \pi^{2}}{3} \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}} & =\frac{2 \pi^{2}}{4(3)} \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}} & =\frac{\pi^{2}}{6}
\end{aligned}
$$

## AP 7

Let $\epsilon>0$ be given, let $\delta=\frac{\epsilon}{C}$, then if $\left|x-x_{0}\right|<\delta$, then

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq C\left|x-x_{0}\right|<C\left(\frac{\epsilon}{C}\right)=\epsilon \checkmark
$$

Hence $f$ is continuous at $x_{0}$, and hence continuous

$$
\text { AP } 8
$$

(a) Let $\epsilon>0$ be given, by assumption we have

$$
\limsup _{n=\infty} \frac{a_{n}}{b_{n}}=\lim _{N \rightarrow \infty} \sup \left\{\left.\frac{a_{n}}{b_{n}} \right\rvert\, n>N\right\}=c
$$

So there is $N_{1}$ such that if $N>N_{1}$, then

$$
\left|\sup \left\{\left.\frac{a_{n}}{b_{n}} \right\rvert\, n>N\right\}-c\right|<\epsilon \Rightarrow \sup \left\{\left.\frac{a_{n}}{b_{n}} \right\rvert\, n>N\right\}-c<\epsilon
$$

In particular, for some $N$ we have

$$
\sup \left\{\left.\frac{a_{n}}{b_{n}} \right\rvert\, n>N\right\}<c+\epsilon
$$

And so for all $n>N$, we get

$$
\frac{a_{n}}{b_{n}}<c+\epsilon \Rightarrow a_{n}<(c+\epsilon) b_{n}
$$

However, since $\sum b_{n}<\infty$, by comparison, we get $\sum a_{n}<\infty$, and so $\sum a_{n}$ converges
(b) Let $a_{n}=\frac{(-1)^{n}+1}{n^{2}}$ and $b_{n}=\frac{1}{n^{2}}$, then

$$
\limsup _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\limsup _{n \rightarrow \infty} \frac{\frac{(-1)^{n}+1}{n^{2}}}{\frac{1}{n^{2}}}=\limsup _{n \rightarrow \infty}(-1)^{n}+1=2<\infty
$$

Therefore, since $\sum b_{n}=\sum \frac{1}{n^{2}}$ converges, we get $\sum a_{n}=\sum \frac{(-1)^{n}+1}{n^{2}}$ converges

