
HOMEWORK 7 − AP SOLUTIONS

AP 1

(a) Consider the partial sums:

sn =
n∑

k=1

f(k) = f(1) + · · ·+ f(n)

As before, for each k = 1, . . . , n consider the rectangle with base
[k, k + 1] and height f(k)

Then

sn = f(1) + · · ·+ f(n) = Sum of areas of n rectangles

On the other hand, since f is decreasing, the above sum larger
than the area under f from 1 to n+ 1 that is

∫ n+1

1 f(x)dx.

And therefore

sn =
n∑

k=1

f(k) ≥
∫ n+1

1

f(x)dx =: tn

However

lim
n→∞

tn = lim
n→∞

∫ n+1

1

f(x)dx =

∫ ∞

1

f(x)dx = ∞ (By assumption)
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And therefore, by comparison, limn→∞ sn = ∞, meaning that∑∞
n=1 f(n) = ∞ (by definition of a series) □

(b) Consider again the partial sums

sn =
n∑

k=1

f(k) = f(1) + · · ·+ f(n)

It is enough to show that (sn) is bounded.

This time, for each k = 1, . . . , n, consider the rectangle with
base [k − 1, k] and height f(k)

sn = f(1) + · · ·+ f(n) = Sum of the areas of the rectangles

Note: Since f and
∫∞
1 f(x)dx is only defined on [1,∞), we need

to ignore the first rectangle (which has finite area anyway), so

sn = (Rectangle 1) + (Rectangles 2 to n) = f(1)+ (Rectangles 2 to n)

Since f is decreasing, the area under the graph of f from 1 to
n is bigger than the sum of the areas of rectangles 2 to n

sn ≤f(1) + Area of Rectangles 2 to n

≤f(1) +

∫ n

1

f(x)dx

≤f(1) +

∫ ∞

1

f(x)dx (since f ≥ 0)

Therefore, with M =: f(1) +
∫∞
1 f(x)dx we get 0 ≤ sn ≤ M

Hence |sn| ≤ M for all n, and so (sn) is bounded, and therefore∑
f(n) converges □
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AP 2

(a) By Cauchy-Schwarz, we get

∞∑
n=1

√
an
n

=
∞∑
n=1

√
an

(
1

n

)

≤

( ∞∑
n=1

(
√
an)

2

) 1
2
( ∞∑

n=1

(
1

n

)2
) 1

2

≤

( ∞∑
n=1

an

) 1
2
( ∞∑

n=1

1

n2

) 1
2

However
∑∞

n=1 an < ∞ by assumption, and
∑∞

n=1
1
n2 since it’s a

2−series, so the right-hand-side is finite, and therefore
∑∞

n=1

√
an
n

is bounded, and hence converges.

(b) Again, by the Cauchy-Schwarz inequality

∞∑
n=1

√
an
√
bn ≤

( ∞∑
n=1

(
√
an)

2

) 1
2
( ∞∑

n=1

(√
bn

)2) 1
2

≤

( ∞∑
n=1

an

) 1
2
( ∞∑

n=1

bn

) 1
2

But by assumption, each term on the right-hand-side is finite,
and therefore

∑∞
n=1

√
anbn is bounded, and hence converges.
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AP 3

(a)

sn+1 − sn =

(
n+1∑
k=1

1

k

)
−
∫ n+1

1

1

x
dx−

(
n∑

k=1

1

k

)
−
∫ n

1

1

x
dx

=

(
n+1∑
k=1

1

k

)
−

(
n∑

k=1

1

k

)
−
(∫ n+1

1

1

x
dx−

∫ n

1

1

x
dx

)
=

1

n+ 1
−
∫ n+1

n

1

x
dx

However, since 1
x is decreasing, we have 1

x ≥ 1
n+1 on the interval

[n, n+1], hence the area under f on [n, n+1], which is
∫ n+1

n
1
xdx

is greater than the area of the rectangle with base [n, n+1] and
height 1

n+1 , and so

sn+1 − sn =
1

n+ 1
−
∫ n+1

n

1

x
dx < 0

Hence sn+1 < sn and therefore (sn) is decreasing

(b) First of all, since (sn) is decreasing, we have

sn ≤ s1 =

(
1∑

k=1

1

n

)
−
∫ 1

1

1

x
dx = 1− 0 = 1

Hence sn ≤ 1.

On the other hand, by considering again the rectangles with
base [k, k + 1] and height 1

k (for k = 1, . . . , n), we get that
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n∑
k=1

1

k
= Sum of areas of rectangles

≥ Area of
1

x
from 0 to n+ 1

=

∫ n+1

1

1

x
dx

>

∫ n

1

1

x
dx

And therefore sn =
∑n

k=1
1
k −

∫ n

1
1
xdx > 0.

Hence we conclude that 0 < sn ≤ 1 for all n.

(c) Since (sn) is decreasing and bounded below by 0, (sn) converges.

AP 4

(a) Let an = n3−1
n4+3 and bn = n3

n4 =
1
n . Then

an
bn

=
n3−1
n4+3
1
n

=
n(n3 − 1)

n4 + 3
=

n4 − n

n4 + 3

n→∞→ 1

But since
∑

bn =
∑

1
n = ∞, by the limit comparison test, we

conclude that
∑

an diverges as well.

(b) Since c > 0, let ϵ > 0 be such that c− ϵ > 0, then by definition
of a limit, there is N such that if n > N , then
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∣∣∣∣anbn − c

∣∣∣∣ < ϵ ⇒− ϵ <
an
bn

− c < ϵ

⇒c− ϵ <
an
bn

< c+ ϵ

⇒(c− ϵ)bn < an < (c+ ϵ)bn

However, if
∑

bn converges, then since 0 ≤ an < (c + ϵ)bn, by
comparison

∑
an converges

And if
∑

bn = ∞, then since an > (c − ϵ)bn, we get that by
comparison

∑
an = ∞ □

AP 5

STEP 1: First of all:
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e− sn =
∞∑
k=0

1

k!
−

n∑
k=0

1

k!

=
∞∑

k=n+1

1

k!

=
1

(n+ 1)!
+

1

(n+ 2)!
+

1

(n+ 3)!
+ . . .

=
1

(n+ 1)!

(
1 +

(n+ 1)!

(n+ 2)!
+

(n+ 1)!

(n+ 3)!
+ . . .

)
=

1

(n+ 1)!

(
1 +

1

n+ 2
+

1

(n+ 3)(n+ 2)
+ . . .

)
<

1

(n+ 1)!

(
1 +

1

n+ 1
+

1

(n+ 1)2
+ . . .

)
=

1

(n+ 1)!

(
1 +

(
1

n+ 1

)
+

(
1

n+ 1

)2
)

=
1

(n+ 1)!

(
1

1−
(

1
n+1

))

=
1

(n+ 1)!

(
1

n+1−1
n+1

)

=
1

(n+ 1)!

(
n+ 1

n

)
=

n+ 1

(n+ 1)!

(
1

n

)
=

1

n!

(
1

n

)
Therefore e−sn < 1

n!

(
1
n

)
but also e−sn =

∑∞
k=n+1

1
k! > 0 and therefore
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0 < e− sn <
1

n!n

STEP 2: Now suppose e = p
q , where p, q > 0 since e > 0. But then

q!e = q!

(
p

q

)
=

(
q!

q

)
p = (q − 1)(q − 2) . . . (1)p, which is an integer

And also

q!sq =q!

(
1 + 1 +

1

2!
+ · · ·+ 1

q!

)
=q! + q! +

q!

2!
+ · · ·+ q!

q!
=q! + q! + q(q − 1) . . . (3) + · · ·+ 1 is an integer

Therefore q!(e − sq) = q!e − q!sq is an integer, being the difference of
two integers.

STEP 3: However, in STEP 1 with n = q ≥ 1, we get that

0 < e− sq <
1

q!q
⇒ 0 < q!(e− sq) <

1

q
≤ 1 ⇒ 0 < q!(e− sq) < 1

But then q!(e− sq) is an integer between 0 and 1, which is impossible
⇒⇐

AP 6

On the one hand, using an integration by parts, we get
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An =
2

π

(∫ π

0

x sin(nx)dx

)
=
2

π

([
x

(
− cos(nx)

n

)]π
0

+

∫ π

0

cos(nx)

n
dx

)
=
2

π

(
−π cos(πn)

n
+ 0 +

[
sin(nx)

n2

]π
0

)
=
2

π
[(−π(−1)n)n+ 0− 0]

=
−2(−1)n

n

On the other hand:

2

π

∫ π

0

x2dx =
2

π

[
x3

3

]π
0

=

(
2

π

)(
π3

3

)
=

2π2

3

Therefore Parseval’s Identity becomes:

∞∑
n=1

(An)
2 =

(
2

π

)∫ π

0

x2dx

∞∑
n=1

(
−2(−1)n

n

)2

=
2π2

3

∞∑
n=1

4

n2
=
2π2

3

∞∑
n=1

1

n2
=
2π2

4(3)

∞∑
n=1

1

n2
=
π2

6
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AP 7

Let ϵ > 0 be given, let δ = ϵ
C , then if |x− x0| < δ, then

|f(x)− f(x0)| ≤ C |x− x0| < C
( ϵ

C

)
= ϵ✓

Hence f is continuous at x0, and hence continuous □

AP 8

(a) Let ϵ > 0 be given, by assumption we have

lim sup
n=∞

an
bn

= lim
N→∞

sup

{
an
bn

| n > N

}
= c

So there is N1 such that if N > N1, then

∣∣∣∣sup{an
bn

| n > N

}
− c

∣∣∣∣ < ϵ ⇒ sup

{
an
bn

| n > N

}
− c < ϵ

In particular, for some N we have

sup

{
an
bn

| n > N

}
< c+ ϵ

And so for all n > N , we get

an
bn

< c+ ϵ ⇒ an < (c+ ϵ)bn

However, since
∑

bn < ∞, by comparison, we get
∑

an < ∞,
and so

∑
an converges □
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(b) Let an = (−1)n+1
n2 and bn = 1

n2 , then

lim sup
n→∞

an
bn

= lim sup
n→∞

(−1)n+1
n2

1
n2

= lim sup
n→∞

(−1)n + 1 = 2 < ∞

Therefore, since
∑

bn =
∑

1
n2 converges, we get

∑
an =

∑ (−1)n+1
n2

converges
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