HOMEWORK 7 - SELECTED BOOK SOLUTIONS

17.9(A)

STEP 1: Scratchwork

$$|f(x) - f(x_0)| = |f(x) - f(2)| = |x^2 - 4| = |x - 2| |x + 2| \stackrel{?}{\leq} \epsilon$$

Now if |x-2| < 1, then -1 < x-2 < 1 so 1 < x < 3, hence 3 < x+2 < 5 and therefore |x+2| < 5. Hence

$$|x-2| |x+2| \le 5 |x-2| < \epsilon \Rightarrow |x-2| < \frac{\epsilon}{5}$$

STEP 2: Actual proof

Let $\epsilon > 0$ be given, let $\delta = \min\left\{1, \frac{\epsilon}{5}\right\} > 0$ and suppose $|x - 2| < \delta$, then |x + 2| < 5 and therefore

$$|f(x) - f(2)| = |x - 2| |x + 2| \le 5 |x - 2| < 5 \left(\frac{\epsilon}{5}\right) = \epsilon \checkmark$$

Hence $f(x) = x^2$ is continuous at $x_0 = 2$

Date: Friday, October 22, 2021.

17.9(B)

STEP 1: Scratchwork

$$|f(x) - f(x_0)| = \left|\sqrt{x}\right| = \sqrt{x} < \epsilon \Rightarrow |x| < \epsilon^2$$

STEP 2: Actual Proof

Let $\epsilon > 0$ be given, let $\delta = \epsilon^2$, then if $|x| < \delta$, then

$$|f(x) - f(x_0)| = \left|\sqrt{x}\right| < \sqrt{\epsilon^2} = \epsilon \checkmark$$

Hence $f(x) = \sqrt{x}$ is continuous at $x_0 = 0$

17.9(C)

STEP 1: Scratchwork

$$|f(x) - f(x_0)| = \left| x \sin\left(\frac{1}{x}\right) \right| = |x| \underbrace{\left| \sin\left(\frac{1}{x}\right) \right|}_{\leq 1} \leq |x| < \epsilon$$

STEP 2: Actual Proof

Let $\epsilon > 0$ be given, let $\delta = \epsilon$, then if $|x| < \delta$, then

$$|f(x) - f(x_0)| = |x| \underbrace{\left| \sin\left(\frac{1}{x}\right) \right|}_{\leq 1} \leq |x| < \epsilon \checkmark$$

Hence f(x) is continuous at $x_0 = 0$

17.9(D)

STEP 1: Scratchwork

$$|f(x) - f(x_0)| = |x^3 - (x_0)^3|$$

= $|x - x_0| |x^2 + x_0 x + (x_0)^2|$
 $\leq |x - x_0| (|x|^2 + |x_0| |x| + |x_0|^2)$
 $\stackrel{?}{\leq} \epsilon$

Now if $|x - x_0| < 1$, then

$$|x| = |x - x_0 + x_0| \le |x - x_0| + |x_0| < 1 + |x_0|$$

And therefore

$$|x - x_0| \left(|x|^2 + |x_0| |x| + |x_0|^2 \right)$$

$$\leq |x - x_0| \underbrace{\left((1 + |x_0|)^2 + |x_0| (1 + |x_0|) + |x_0|^2 \right)}_{C}$$

$$< \epsilon$$

Which gives $\delta = \frac{\epsilon}{C}$

STEP 2: Actual proof

Let $\epsilon > 0$ be given, let $\delta = \min\left\{1, \frac{\epsilon}{C}\right\} > 0$ and suppose $|x - x_0| < \delta$, then $|x| \le |x_0| + 1$ and therefore

$$|f(x) - f(x_0)| = |x - x_0| \left| x^2 + x_0 x + (x_0)^2 \right|$$

$$\leq |x - x_0| \left(|x|^2 + |x_0| |x| + |x_0|^2 \right)$$

$$\leq |x - x_0| C$$

$$< \left(\frac{\epsilon}{\mathscr{C}} \right) \mathscr{C}$$

$$= \epsilon \checkmark$$

Hence $f(x) = x^3$ is continuous at x_0

17.10(A)

The Sequence Way: Let (x_n) be a sequence of positive numbers converging to 0, for instance $x_n = \frac{1}{n}$. Then $x_n \to 0$, but

$$f(x_n) = 1 \nrightarrow 0 = f(0)$$

Therefore f is not continuous at $x_0 = 0$.

The $\epsilon - \delta$ Way: Let $\epsilon = \frac{1}{2}$, then, if $\delta > 0$, let x = any positive number such that $|x| < \delta$, for instance $x = \frac{\delta}{2}$, then $|x - 0| < \delta$, but

$$|f(x) - f(0)| = |1 - 0| = 1 \ll \frac{1}{2} = \epsilon$$

Hence f is not continuous at $x_0 = 0$

17.10(B)

Choose x_n such that $\sin\left(\frac{1}{x_n}\right) = 1$, so $\frac{1}{x_n} = \frac{\pi}{2} + 2\pi n$, so $x_n = \frac{1}{\frac{\pi}{2} + 2\pi n}$ Then
$$x_n \to 0$$
 but $g(x_n) = \sin(\frac{\pi}{2} + 2\pi n) = 1 \not\rightarrow g(0) = 0.$

Hence g is not continuous at $x_0 = 0$