P12801 Peiyan Li

MATH S4062 - HOMEWORK 7

• Chapter 9: 16, 17(b)(c), 19, 23

Please also do the Additional Problem below:

Additional Problem 1: Show that the Implicit Function Theorem implies (the following version of) the Inverse Function Theorem:

Inverse Function Theorem: Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ is C^1 . If $det(f'(a)) \neq 0$ for some a, there is an open neighborhood U of a and an open neighborhood V of f(a) and $g : V \to U$ such that f(g(y)) = y for all y. Moreover

$$g'(f(a)) = (f'(a))^{-1}$$

Note: Hence, combined with the proof given in lecture, the Inverse and Implicit function theorems are equivalent.

Date: Due: Tuesday, August 2, 2022.

Hints:

Problem 16: For the last part, it's useful to notice that $f'\left(\frac{1}{\pi m}\right) = 1 + 2(-1)^m$ so the minimum value of f inside $\left[\frac{1}{(2m+1)\pi}, \frac{1}{(2m)\pi}\right]$ is assumed at an interior point.

Problem 17: The Jacobian is just the determinant of the derivative matrix and f is not one-to-one by periodicity in y. For (c), it's useful to let $u = e^x \cos(y)$ and $v = e^x \sin(y)$ and solve for x and y in terms of u and v

Problem 19: Please use the Implicit Function Theorem for the first three parts. For the last part, if you add the last two equations and subtract it from the first, you should get u = 0 or u = 3, so generally the system cannot be solved for x, y, z in terms of u.

Problem 23: Please do this using the Implicit Function Theorem

Additional Problem 1: Apply the Implicit Function theorem to $F : \mathbb{R}^{n+n} \to \mathbb{R}^n$ given by F(x, y) = y - f(x) and $(x_0, y_0) = (a, f(a))$ and let g(y) = G(y), where G is from the Implicit Function Theorem. Careful that here the roles of x and y are switched

16. Show that the continuity of f' at the point **a** is needed in the inverse function theorem, even in the case n = 1: If

$$f(t) = t + 2t^2 \sin\left(\frac{1}{t}\right)$$

for $t \neq 0$, and f(0) = 0, then f'(0) = 1, f' is bounded in (-1, 1), but f is not one-to-one in any neighborhood of 0.

$$\begin{aligned} f(0) = 0 \quad f(0) = 0 + 20^{2} \sin \frac{1}{6} = 0 \\ f'(0) = \int_{\frac{1}{1+90}} \frac{f(t)}{t} = \frac{1}{t+90} \left(1 + 2t \cdot \sin \frac{1}{6} \right) = 1 \\ f'(t) = 1 + 4t \sin \frac{1}{6} - 2\cos(\frac{1}{6}) \quad for t \neq 0 \quad f'(t) \leq 1 + 4 + 2 = 7 \\ \Rightarrow \quad f'(t) \leq 7 \quad for all t \in (-1, 1) \quad \swarrow \\ f'(\frac{1}{100}) = 1 + 4 \cdot 0 - 2 \cdot \cos(\pi m) \\ = 1 - 2(-1)^{m} \\ \text{so that } f(t) \text{ is decreasing at } t = \frac{1}{m\pi} \quad f \text{ m is even } \left(f(\frac{1}{100} + 0) \right) \\ \text{and in crease } if \quad k \text{ is odd} \\ \text{the minimum value of } f(t) \text{ on } \\ \Gamma = \frac{1}{2m\pi} \frac{1}{\pi} \quad j \text{ m is even } \left(f(\frac{1}{m\pi} + 0) \right) \\ \text{os an interior point } S : \\ \text{there is } S \in \left(\frac{1}{2m\pi} - \frac{1}{2m\pi} \right) \quad \text{such that } f(t) \text{ to annot be one-to-one on this interval}. \end{aligned}$$

17. Let $f = (f_1, f_2)$ be the mapping of R^2 into R^2 given by

$$f_1(x, y) = e^x \cos y, \qquad f_2(x, y) = e^x \sin y.$$

(a) What is the range of f?

(b) Show that the Jacobian of f is not zero at any point of R^2 . Thus every point of R^2 has a neighborhood in which f is one-to-one. Nevertheless, f is not one-to-one on R^2 .

(c) Put $\mathbf{a} = (0, \pi/3)$, $\mathbf{b} = f(\mathbf{a})$, let g be the continuous inverse of f, defined in a neighborhood of b, such that $g(\mathbf{b}) = \mathbf{a}$. Find an explicit formula for g, compute $\mathbf{f}'(\mathbf{a})$ and $\mathbf{g}'(\mathbf{b})$, and verify the formula (52).

(d) What are the images under f of lines parallel to the coordinate axes?

(b) $\begin{pmatrix} \frac{\partial t_1}{\partial x} & \frac{\partial t_1}{\partial y} \\ \frac{\partial t_2}{\partial x} & \frac{\partial t_2}{\partial y} \end{pmatrix} = \begin{pmatrix} e^{x} \cos y & -e^{x} \sin y \\ e^{x} \sin y & e^{x} \cos y \end{pmatrix}$ $|f'(x)| = e^{2x}(\cos^2 y + \sin^2 y) = e^{2x} \neq 0$ for all zThus by inverse function Theorem, every point of \mathbb{R}^2 has a neighborhood in which f is one to one However $f(x, y+2\pi t) = f(x, y)$. + is not one-to-one $\mathbf{a} = (\mathbf{0}, \frac{\mathbf{u}}{\mathbf{s}}), \quad \mathbf{b} = (\frac{1}{2}, \frac{\mathbf{u}}{\mathbf{s}})$ (C) (52) $\mathbf{g}'(\mathbf{y}) = \{\mathbf{f}'(\mathbf{g}(\mathbf{y}))\}^{-1} \qquad (\mathbf{y} \in V)$ $f_1(x, y) = e^x \cos y, \qquad f_2(x, y) = e^x \sin y.$ $N = e^{x} \cos y$, $V = e^{x} \sin y$
$$\begin{split} u^{k+\nu^{2}} &= \theta^{2\times} \implies \chi = 4m\sqrt{u^{2}+\nu^{2}} \\ \frac{V}{u} = tuny \implies y = \arctan\left(\frac{v}{n}\right) \\ f^{\prime}(\chi, y) &= \begin{pmatrix} \theta^{\chi}\cos y & -\theta^{\chi}\sin y \\ \theta^{\chi}\sin y & \theta^{\chi}\cos y \end{pmatrix} \quad g^{\prime}(u, \nu) = \begin{pmatrix} \frac{U}{u^{2}+\nu^{2}} & \frac{V}{u^{2}+\nu^{2}} \\ -\frac{V}{u^{2}+\nu^{2}} & \frac{U}{u^{2}+\nu^{2}} \\ \frac{-V}{u^{2}+\nu^{2}} & \frac{U}{u^{2}+\nu^{2}} \end{pmatrix} \end{split}$$
 $g'(f(x,y)) = \begin{pmatrix} e^{-x}\cos y & e^{-x}\sin y \\ -e^{-x}\sin y & e^{-x}\cos y \end{pmatrix} \implies g'(f(x,y))f'(x,y) = \begin{pmatrix} f & 0 \\ 0 & 1 \end{pmatrix}$ $f'(g(u,v)) = \begin{pmatrix} u & -v \\ \neg & u \end{pmatrix} \implies f'(g(x,y))g'(x,y) = \begin{pmatrix} v & 0 \\ 0 & 1 \end{pmatrix}$ which verity (52)

19. Show that the system of equations

 $3x + y - z + u^{2} = 0$ x - y + 2z + u = 0 2x + 2y - 3z + 2u = 0

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x; but not for x, y, z in terms of u.

(◎ + ◎ - ○ we have $\exists u - u^2 = 0$ ⇒ $u = \exists \text{ or } O$ If one of two equations holds, we can solve just the lost two equations for any two of x, y, z in terms of the third. The remaining equation will then satisfied. $\forall x = -\frac{3}{4}, y = \frac{7z}{4}, u = 0$; $x = -\frac{9+z}{4}y = \frac{3+7z}{4}, u = 3$ $2 \Rightarrow x = -\frac{y}{7}, z = \frac{4y}{7}, u = 0$; $x = \frac{60+4y}{7}, z = \frac{4y-3}{7}, u = 3$ $3 \Rightarrow y = -7x, z = -4x, u = 0$; $y = \frac{7x-60}{4}, z = 9-4x, u = 3$ We can also see this through linear transformation: $f'(x, y, z, u) = \begin{pmatrix} 3 & 1 & -1 & 2u \\ 1 & -1 & 2 & 1 \\ 2 & 1 & -3 & 2 \end{pmatrix}$

Any 3x3 sub matrix containing the last column is invertible when u=0 or u=3

while the first three colum does not create an invertible mostrix

23. Define f in R^3 by

$$f(x, y_1, y_2) = x^2 y_1 + e^x + y_2.$$

Show that f(0, 1, -1) = 0, $(D_1 f)(0, 1, -1) \neq 0$, and that there exists therefore a differentiable function g in some neighborhood of (1, -1) in \mathbb{R}^2 , such that g(1, -1) = 0 and

Implicit Function Theorem: $f(g(y_1, y_2), y_1, y_2) = 0.$ Suppose $F : \mathbb{R}^{n+m} \to \mathbb{R}^m$ is C^1 and $F(x_0, y_0) = 0$ for some (x_0, y_0) . Find $(D_1g)(1, -1)$ and $(D_2g)(1, -1)$. If det $F_u(x_0, y_0) \neq 0$ then there is an open neighborhood U of (x_0, y_0) and an open neighborhood W of x_0 and a function $G: W \to \mathbb{R}^m$ differentiable at x_0 such that $+(0, 1, -1) = 0 + e^{0} + -1 = 1 - 1 = 0$ $(D_1+)(\chi, y_1, y_2) = 2 \times y_1 + e^{\chi}$ $\{(x,y) \in U \mid F(x,y) = 0\} = \{(x,G(x)) \mid x \in W\}$ Moreover $G'(x_0) = -(F_y(x_0, y_y))^{-1} F_x(x_0, y_0)$ $(D_{1}^{+})(0,1,-1) = 1 \neq 0$ In other words, if the derivative with respect to the variable you want to solve for is invertible, then the equation F(x, y) = 0 is locally the graph of a function y = G(x). We can use the chain Rule $het \psi(y_1, y_2) = f(g(y_1, y_2), y_1, y_2) \equiv 0$ $\frac{\partial \psi}{\partial y_1}(y_1, y_2) = \frac{\partial f}{\partial x}(g(y_1, y_2), y_1, y_2) \frac{\partial q}{\partial u_1}(y_1, y_2) + \frac{\partial f}{\partial u_1}f(g, y_1, y_2)$ $\geqslant o = (29, 9(y_1, y_2) + e^{9(y_1, y_2)}) \frac{\partial q}{\partial y_1}(y_1, y_2) + (g(y_1, y_2))^2$ taking $y_1 = 1$, $y_2 = -1$, $g(y_1, y_2) = 0$, we get $1 \cdot D_1g(1,-1) + v = D_1g(1,-1) = v$ $\frac{\partial \psi}{\partial y_2} = \frac{\partial f}{\partial x} \left(g(y_1, y_2), y_1, y_2 \right) \frac{\partial g}{\partial y_2} (y_1, y_2) + \frac{\partial f}{\partial y_2} f(g_1, y_1, y_2)$ $\Rightarrow o = (2Y_1 g(Y_2) + e^{g(y_1, Y_2)}) \xrightarrow{\partial g}_{\partial Y_2} (Y_1, Y_2) + 1$ taking $y_1 = 1$, $y_2 = -1$, $g(y_1, y_2) = 0$, we get $0 = (2 \cdot 0 + 1) D_2 g(1) + 1$ $\Rightarrow D_{ig}(1, +) = -1$

Additional Problem 1: Show that the Implicit Function Theorem implies (the following version of) the Inverse Function Theorem:

Inverse Function Theorem: Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ is C^1 . If $\det(f'(a)) \neq 0$ for some a, there is an open neighborhood U of a and an open neighborhood V of f(a) and $g : V \to U$ such that f(g(y)) = y for all y. Moreover

$$g'(f(a)) = (f'(a))^{-}$$

Note: Hence, combined with the proof given in lecture, the Inverse and Implicit function theorems are equivalent.

Additional Problem 1: Apply the Implicit Function theorem to $F : \mathbb{R}^{n+n} \to \mathbb{R}^n$ given by F(x, y) = y - f(x) and $(x_0, y_0) = (a, f(a))$ and let g(y) = G(y), where G is from the Implicit Function Theorem. Careful that here the roles of x and y are switched

Implicit Function Theorem:

Suppose $F : \mathbb{R}^{n+m} \to \mathbb{R}^m$ is C^1 and $F(x_0, y_0) = 0$ for some (x_0, y_0) .

If det
$$F_w(x_0, y_0) \neq 0$$
 then there is an open neighborhood U of (x_0, y_0) and an open neighborhood W of x_0 and a function $G: W \to \mathbb{R}^m$ differentiable at x_0 such that

 $\{(x,y) \in U \mid F(x,y) = 0\} = \{(x,G(x)) \mid x \in W\}$

Moreover $G'(x_0) = -(F_y(x_0, y_y))^{-1} F_x(x_0, y_0)$

In other words, if the derivative with respect to the variable you want to solve for is invertible, then the equation F(x, y) = 0 is locally the graph of a function y = G(x).

and let give - G(y), where
$$f$$
 is from the Implete Prototion Theorem
Considering $F: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n} \quad \neq (x, y) = y - f^{(x)} \in \mathbb{R}^{n}$
 $(x_{0}, y_{0}) = (a, f(a))$
 $F(x_{0}, y_{0}) = F(a, f(a)) = f(a) - f(a) = 0$
 $\frac{1}{k}(x_{0}, y_{0}) = \frac{1}{k-v} = \frac{F(x_{0}, f(a)) - F(x_{0}, y_{0})}{v}$
 $= \frac{1}{k-v} = \frac{F(x_{0}+t, y_{0}) - F(x_{0}, y_{0})}{v}$
Because det $(f'(a)) \neq 0$ det $F_{x}(x_{0}, y_{0}) \neq 0$
then there is an open neighborhood W of $(a, f(a))$, and
an open neighborhood V of $f^{(a)}$
and a function $g: V \rightarrow \mathbb{R}^{n}$ such that
 $f(x, y) \in W \mid F(x, y) = 0^{2} = f(g(y), y) \mid y \in V$
unlich means there is an open neighborhood V of $f(a)$ st.
 $F(g(y), y) = y - f(g(y)) = 0$, $\iff y = f(g(y))$ when $y \in V$
And $(g(y), y) \in W$. W open, take U as the first n dim d W ,
then $g(y) \in U$. U open, $g: V \rightarrow U$
Also $g'(y_{0}) = -(f(x))^{-1}$
 $= -(f'(a))^{-1}$ $= \frac{1}{4v_{0}}$
Then $g'(f^{(a)}) = -(f'(w))^{-1}$ $= 1$