MATH 409 - HOMEWORK 8

Reading: Sections 17 and 18

- Section 17: 8 (see Note), 12, 13, 14, AP1, AP2, AP3
- Section 18: 9, 10, 12, AP4, (Optional: AP5)

Notes: For Problem 8(b), please do this directly, without using (a) (use the definition of min)

Additional Problem 1: Use the $\epsilon-\delta$ definition of continuity to prove
(a) $f(x)=|x|$ is continuous
(b) $f(x)=\frac{1}{x}$ is continuous at x_{0}, for all $x_{0} \neq 0$
(c) $f(x)=\sqrt{x}$ is continuous at x_{0}, for all $x_{0}>0$

Definition:

If $f: \mathbb{R} \rightarrow \mathbb{R}$, and U is any subset of \mathbb{R}, then the pre-image $f^{-1}(U)$ is defined by

$$
x \in f^{-1}(U) \Leftrightarrow f(x) \in U
$$

This definition works for any function f, not just invertible ones!
Example: $f(x)=2 x+3$, then $f^{-1}((5,9))=(1,3)$ because

$$
x \in f^{-1}((5,9)) \Leftrightarrow f(x) \in(5,9) \Leftrightarrow 5<2 x+3<9 \Leftrightarrow 1<x<3
$$

Additional Problem 2: Calculate $f^{-1}(U)$ for the following functions f and the following sets U
(a) $f(x)=3 x+7, U=(7,10)$
(b) $f(x)=x^{2}, U=(-1,4)$
(c) $f(x)=\sin (x), U=(0,1)$

Note: Observe that in all of the examples, both U and $f^{-1}(U)$ are open intervals (or unions of open intervals) This is precisely because f is continuous. In fact, in topology, this is taken as the definition of continuity, since it only involves open sets:

Fact: (do not prove)

$f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if and only if

$$
U \text { is open } \Rightarrow f^{-1}(U) \text { is open }
$$

Additional Problem 3: To illustrate the elegance of the above definition, let's give a quick proof of the fact that composition of continuous functions are continuous. You do not need to know the definition of open to do this problem.
(a) If f and g are any functions (not necessarily invertible), prove that

$$
(g \circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)
$$

(b) Use (a) and the definition above to show that if f and g are continuous, then $g \circ f$ is continuous

Additional Problem 4: Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(f(f(x)))=x$ for all x, then $f(x)=x$.

Optional Additional Problem 5: Prove that, for any function f and any sets A and B, we have
(a) $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$
(b) $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$
(c) $f^{-1}\left(A^{c}\right)=\left(f^{-1}(A)\right)^{c}$

Hints:

17.8(b) Do it by cases, first assuming $f(x) \leq g(x)$ and then assuming $g(x) \leq f(x)$. Remember that I did the version with max in the following video: Max is continuous
17.12 For (a), remember that \mathbb{Q} is dense in \mathbb{R} (the sequence definition), and for (b), consider $f(x)-g(x)$ and use the result in (a)
17.13 For (a), if x_{0} is irrational, use \mathbb{Q} is dense in \mathbb{R}, or, if x_{0} is rational use that $x_{n}=x_{0}+\frac{\sqrt{2}}{n}$ is a sequence of irrational numbers converging to x_{0}. For (b), use a similar argument, except for $x_{0}=0$ where you use $|h(x)| \leq|x|$
17.14 I'm surprised the book didn't put any hints here, because it's a nontrivial problem! First of all, if x_{0} is rational use the sequence $x_{n}=x_{0}+\frac{\sqrt{2}}{n}$.

To show f is continuous at irrational points x_{0}, use an $\epsilon-\delta$ argument as follows:

Let $\epsilon>0$ be given, and let N be such that $\frac{1}{N}<\epsilon$. Then, choose δ so small that there are no integers in $\left(x_{0}-\delta, x_{0}+\delta\right)$, and now choose δ so small that there are no fractions with denominator 2 in $\left(x_{0}-\delta, x_{0}+\delta\right)$, and choose δ even smaller that there are no fractions with denominator 3 in $\left(x_{0}-\delta, x_{0}+\delta\right)$, and so on, until there are no fractions with denominator N in $\left(x_{0}-\delta, x_{0}+\delta\right)$.

If $\left|x-x_{0}\right|<\delta$ and $x=\frac{p}{q}$ is rational, show $q \geq N+1$ and conclude. And what if x is irrational?

This is sometimes called the Popcorn function ©
18.9 The book's hint is a bit confusing in my opinion, so here's a better one: Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. WLOG, we may assume $a_{n}>0$. Since f goes to ∞ as x goes to ∞, there is $b>0$ large enough such that $f(b)>0$, and since f goes to $-\infty$ as x goes to $-\infty$, there is $a<0$ such that $f(a)<0$. There is no need to prove those statements since we haven't defined limits yet.
18.10 Argue in cases, if $f(1)>f(0)$ or $f(1)=f(0)$ or $f(1)<f(0)$
18.12 Suppose $a<b$, then if $0<a<b$, then since f is continuous on $[a, b]$ we can just apply the IVT, and similarly if $a<b<0$, so the interesting case is $a \leq 0 \leq b$. WLOG, assume $b>0$. Apply the IVT first on $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ to find x such that $\sin (x)=c$ and then let $x_{0}=\frac{1}{x+2 \pi n}$ for n so large that $x_{0} \in(0, b)$

AP 1 For (b), this is similar to the part in the lecture where I showed that $\frac{1}{f}$ is continuous: you have to assume $\left|x-x_{0}\right|<\frac{\left|x_{0}\right|}{2}$ and solve for
$|x|$ using the reverse triangle inequality. For (c), multiply $\sqrt{x}-\sqrt{x_{0}}$ by $\frac{\sqrt{x}+\sqrt{x_{0}}}{\sqrt{x}+\sqrt{x_{0}}}$.

AP 3(a) If $x \in(g \circ f)^{-1}(U)$, then $(g \circ f)(x) \in U$, so $g(f(x)) \in U$, but then what can you tell me about $f(x)$? and then what can you tell me about x ? Likewise, if $x \in f^{-1}\left(g^{-1}(U)\right)$, what can you tell me about $f(x)$? What can you tell me about $g(f(x))$? So what can you tell me about x ?

AP 4 First show that f must be one-to-one. For this suppose $f(x)=$ $f(y)$ and apply f twice to this equation. Therefore, f must be increasing or decreasing (see lecture or book). But if f is decreasing, suppose $x<y$ and apply f three times to get a contradiction. Hence f is increasing. Now if $f(x) \neq x$ for some x, then either $f(x)>x$ or $f(x)<x$. In both cases, apply f twice to get a contradiction.

Note: You can find solutions to this problem in the following video: Press $f f f$ to pay respects

