MATH 409 - HOMEWORK 8

Reading: Sections 17 and 18

- Section 17: 8 (see Note), 12, 13, 14, AP1, AP2, AP3
- Section 18: 9, 10, 12, AP4, (Optional: AP5)

Notes: For Problem 8(b), please do this directly, without using (a) (use the definition of min)

Additional Problem 1: Use the $\epsilon - \delta$ definition of continuity to prove

- (a) f(x) = |x| is continuous
- (b) $f(x) = \frac{1}{x}$ is continuous at x_0 , for all $x_0 \neq 0$
- (c) $f(x) = \sqrt{x}$ is continuous at x_0 , for all $x_0 > 0$

Definition:

If $f : \mathbb{R} \to \mathbb{R}$, and U is any subset of \mathbb{R} , then the **pre-image** $f^{-1}(U)$ is defined by

$$x \in f^{-1}(U) \Leftrightarrow f(x) \in U$$

This definition works for any function f, not just invertible ones!

Example: f(x) = 2x + 3, then $f^{-1}((5,9)) = (1,3)$ because

Date: Due: Friday, October 29, 2021.

$$x \in f^{-1}((5,9)) \Leftrightarrow f(x) \in (5,9) \Leftrightarrow 5 < 2x + 3 < 9 \Leftrightarrow 1 < x < 3$$

Additional Problem 2: Calculate $f^{-1}(U)$ for the following functions f and the following sets U

Note: Observe that in all of the examples, both U and $f^{-1}(U)$ are open intervals (or unions of open intervals) This is precisely because f is continuous. In fact, in topology, this is taken as the *definition* of continuity, since it only involves open sets:

```
Fact: (do not prove)
```

 $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if

$$U$$
 is open $\Rightarrow f^{-1}(U)$ is open

Additional Problem 3: To illustrate the elegance of the above definition, let's give a quick proof of the fact that composition of continuous functions are continuous. You do not need to know the definition of open to do this problem.

(a) If f and g are any functions (not necessarily invertible), prove that

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$$

(b) Use (a) and the definition above to show that if f and g are continuous, then $g \circ f$ is continuous

Additional Problem 4: Show that if $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(f(f(x))) = x for all x, then f(x) = x.

Optional Additional Problem 5: Prove that, for any function f and any sets A and B, we have

(a)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

(b) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$
(c) $f^{-1}(A^c) = (f^{-1}(A))^c$

Hints:

17.8(b) Do it by cases, first assuming $f(x) \le g(x)$ and then assuming $g(x) \le f(x)$. Remember that I did the version with max in the following video: Max is continuous

17.12 For (a), remember that \mathbb{Q} is dense in \mathbb{R} (the sequence definition), and for (b), consider f(x) - g(x) and use the result in (a)

17.13 For (a), if x_0 is irrational, use \mathbb{Q} is dense in \mathbb{R} , or, if x_0 is rational use that $x_n = x_0 + \frac{\sqrt{2}}{n}$ is a sequence of irrational numbers converging to x_0 . For (b), use a similar argument, except for $x_0 = 0$ where you use $|h(x)| \leq |x|$

17.14 I'm surprised the book didn't put any hints here, because it's a nontrivial problem! First of all, if x_0 is rational use the sequence $x_n = x_0 + \frac{\sqrt{2}}{n}$.

To show f is continuous at irrational points x_0 , use an $\epsilon - \delta$ argument as follows:

Let $\epsilon > 0$ be given, and let N be such that $\frac{1}{N} < \epsilon$. Then, choose δ so small that there are no integers in $(x_0 - \delta, x_0 + \delta)$, and now choose δ so small that there are no fractions with denominator 2 in $(x_0 - \delta, x_0 + \delta)$, and choose δ even smaller that there are no fractions with denominator 3 in $(x_0 - \delta, x_0 + \delta)$, and so on, until there are no fractions with denominator N in $(x_0 - \delta, x_0 + \delta)$.

If $|x - x_0| < \delta$ and $x = \frac{p}{q}$ is rational, show $q \ge N + 1$ and conclude. And what if x is irrational?

This is sometimes called the Popcorn function \odot

18.9 The book's hint is a bit confusing in my opinion, so here's a better one: Let $f(x) = a_0 + a_1x + \cdots + a_nx^n$. WLOG, we may assume $a_n > 0$. Since f goes to ∞ as x goes to ∞ , there is b > 0 large enough such that f(b) > 0, and since f goes to $-\infty$ as x goes to $-\infty$, there is a < 0 such that f(a) < 0. There is no need to prove those statements since we haven't defined limits yet.

18.10 Argue in cases, if f(1) > f(0) or f(1) = f(0) or f(1) < f(0)

18.12 Suppose a < b, then if 0 < a < b, then since f is continuous on [a, b] we can just apply the IVT, and similarly if a < b < 0, so the interesting case is $a \le 0 \le b$. WLOG, assume b > 0. Apply the IVT first on $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ to find x such that $\sin(x) = c$ and then let $x_0 = \frac{1}{x+2\pi n}$ for n so large that $x_0 \in (0, b)$

AP 1 For (b), this is similar to the part in the lecture where I showed that $\frac{1}{f}$ is continuous: you have to assume $|x - x_0| < \frac{|x_0|}{2}$ and solve for

4

|x| using the reverse triangle inequality. For (c), multiply $\sqrt{x} - \sqrt{x_0}$ by $\frac{\sqrt{x} + \sqrt{x_0}}{\sqrt{x} + \sqrt{x_0}}$.

AP 3(a) If $x \in (g \circ f)^{-1}(U)$, then $(g \circ f)(x) \in U$, so $g(f(x)) \in U$, but then what can you tell me about f(x)? and then what can you tell me about x? Likewise, if $x \in f^{-1}(g^{-1}(U))$, what can you tell me about f(x)? What can you tell me about g(f(x))? So what can you tell me about x?

AP 4 First show that f must be one-to-one. For this suppose f(x) = f(y) and apply f twice to this equation. Therefore, f must be increasing or decreasing (see lecture or book). But if f is decreasing, suppose x < y and apply f three times to get a contradiction. Hence f is increasing. Now if $f(x) \neq x$ for some x, then either f(x) > x or f(x) < x. In both cases, apply f twice to get a contradiction.

Note: You can find solutions to this problem in the following video: Press fff to pay respects