HOMEWORK 8 - AP SOLUTIONS

AP 1

(a) Let $\epsilon > 0$ be given, let $\delta = \epsilon$, then if $|x - x_0| < \delta$, then

$$|f(x) - f(x_0)| = ||x| - |x_0|| \le |x - x_0| < \epsilon \checkmark$$

Hence f(x) = |x| is continuous

(b) **STEP 1:** Scratchwork

$$|f(x) - f(x_0)| = \left| \frac{1}{x} - \frac{1}{x_0} \right| = \left| \frac{x_0 - x}{x x_0} \right| = \frac{|x - x_0|}{|x_0||x|}$$

Now if $|x - x_0| < \frac{|x_0|}{2}$, then

$$|x - x_0| \ge ||x| - |x_0|| \ge -(|x| - |x_0|) = |x_0| - |x|$$

And therefore

$$|x_0| - |x| < \frac{|x_0|}{2} \Rightarrow |x| > |x_0| - \frac{|x_0|}{2} = \frac{|x_0|}{2}$$

Date: Friday, October 29, 2021.

Hence $\frac{1}{|x|} < \frac{2}{|x_0|}$, and therefore:

$$|f(x) - f(x_0)| = \left(\frac{|x - x_0|}{|x_0|}\right) \left(\frac{1}{|x|}\right)$$

$$\leq \left(\frac{|x - x_0|}{|x_0|}\right) \left(\frac{2}{|x_0|}\right)$$

$$= |x - x_0| \left(\frac{2}{|x_0|^2}\right)$$

$$< \epsilon$$

Which gives $|x - x_0| = \frac{\epsilon |x_0|^2}{2}$

STEP 2: Actual Proof

Let $\epsilon > 0$ be given, let $\delta = \min\left\{\frac{|x_0|}{2}, \frac{\epsilon |x_0|^2}{2}\right\}$, then if $|x - x_0| < \delta$, then

$$|f(x) - f(x_0)| = \left(\frac{|x - x_0|}{|x_0|}\right) \left(\frac{1}{|x|}\right)$$

$$\leq \left(\frac{|x - x_0|}{|x_0|}\right) \left(\frac{2}{|x_0|}\right)$$

$$= |x - x_0| \left(\frac{2}{|x_0|^2}\right)$$

$$< \left(\frac{\epsilon |x_0|^2}{2}\right) \left(\frac{2}{|x_0|^2}\right)$$

$$= \epsilon \checkmark$$

Hence f is continuous at x_0

(c) **STEP 1:** Scratchwork

$$|f(x) - f(x_0)| = |\sqrt{x} - \sqrt{x_0}|$$

$$= \left| (\sqrt{x} - \sqrt{x_0}) \left(\frac{\sqrt{x} + \sqrt{x_0}}{\sqrt{x} + \sqrt{x_0}} \right) \right|$$

$$= \left| (\sqrt{x})^2 - (\sqrt{x_0})^2 \right| \left| \frac{1}{\sqrt{x} + \sqrt{x_0}} \right|$$

$$= |x - x_0| \left(\frac{1}{\sqrt{x} + \sqrt{x_0}} \right)$$

$$\leq |x - x_0| \left(\frac{1}{\sqrt{x_0}} \right)$$

$$< \epsilon$$

Which gives $|x - x_0| < (\sqrt{x_0}) \epsilon$

STEP 2: Actual Proof

Let $\epsilon > 0$ be given, let $\delta = (\sqrt{x_0}) \epsilon$, then if $|x - x_0| < \delta$, then

$$|f(x) - f(x_0)| = |x - x_0| \left(\frac{1}{\sqrt{x} + \sqrt{x_0}}\right)$$

$$\leq |x - x_0| \left(\frac{1}{\sqrt{x_0}}\right)$$

$$< \frac{(\sqrt{x_0}) \epsilon}{\sqrt{x_0}}$$

$$= \epsilon$$

Hence f is continuous at x_0

AP 2

(a)
$$x \in f^{-1}((7,10)) \Leftrightarrow f(x) \in (7,10)$$

$$\Leftrightarrow 7 < 3x + 7 < 10$$

$$\Leftrightarrow 0 < 3x < 3$$

$$\Leftrightarrow 0 < x < 1$$

Hence $f^{-1}(U) = (0,1)$

(b)
$$x \in f^{-1}((-1,4)) \Leftrightarrow f(x) \in (-1,4)$$

$$\Leftrightarrow -1 < x^2 < 4$$

$$\Leftrightarrow -2 < x < 2$$

Hence
$$f^{-1}(U) = (-2, 2)$$

(c)

$$x \in f^{-1}((0,1)) \Leftrightarrow f(x) \in (0,1)$$

$$\Leftrightarrow 0 < \sin(x) < 1$$

$$\Leftrightarrow x \in \left(2\pi m, 2\pi m + \frac{\pi}{2}\right) \cup \left(2\pi m + \frac{\pi}{2}, (2m+1)\pi\right), m \in \mathbb{Z}$$

Hence

$$f^{-1}((0,1)) = \bigcup_{m \in \mathbb{Z}} \left(2\pi m, 2\pi m + \frac{\pi}{2} \right) \cup \left(2\pi m + \frac{\pi}{2}, (2m+1)\pi \right)$$

AP 3

(a) $x \in (g \circ f)^{-1}(U) \Leftrightarrow (g \circ f)(x) \in U$ $\Leftrightarrow g(f(x)) \in U$ $\Leftrightarrow f(x) \in g^{-1}(U)$ $\Leftrightarrow x \in f^{-1}(g^{-1}(U))$

(b) Suppose U is open, then since g is continuous, $g^{-1}(U)$ is open, and hence, since f is continuous, $f^{-1}(g^{-1}(U))$ is open, and therefore

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$$
 is open \checkmark

Hence $g \circ f$ is continuous

AP 4

First, let's show f is one-to-one. Suppose f(x) = f(y), then f(f(x)) = f(f(y)), so f(f(f(x))) = f(f(f(y))), hence x = y

Now since f is continuous and one-to-one on \mathbb{R} , f must be either increasing or decreasing.

But if f were decreasing, then if a < b, then f(a) > f(b) so f(f(a)) < f(f(b)) and hence f(f(f(a))) > f(f(f(b))), hence $a > b \Rightarrow \Leftarrow$

Hence f is increasing.

Now suppose $f(x) \neq x$, then either f(x) < x or f(x) > x.

But if f(x) < x, then f(f(x)) < f(x) so f(f(f(x))) < f(f(x)) and therefore x < f(f(x)), and so we get:

$$x < f(f(x)) < f(x) < x \Rightarrow \Leftarrow$$

And we get a similar contradiction if $f(x) > x \Rightarrow \Leftarrow$.

Therefore we must have f(x) = x for all x

AP 5

(a)

$$x \in f^{-1}(A \cup B) \Leftrightarrow f(x) \in A \cup B$$

 $\Leftrightarrow (f(x) \in A) \text{ or } (f(x) \in B)$
 $\Leftrightarrow (x \in f^{-1}(A)) \text{ or } (x \in f^{-1}(B))$
 $\Leftrightarrow x \in f^{-1}(A) \cup f^{-1}(B)$

(b)

$$x \in f^{-1}(A \cap B) \Leftrightarrow f(x) \in A \cap B$$

 $\Leftrightarrow (f(x) \in A) \text{ and } (f(x) \in B)$
 $\Leftrightarrow (x \in f^{-1}(A)) \text{ and } (x \in f^{-1}(B))$
 $\Leftrightarrow x \in f^{-1}(A) \cap f^{-1}(B)$

(c)
$$x \in f^{-1}(A^c) \Leftrightarrow f(x) \in A^c$$
$$\Leftrightarrow f(x) \notin A$$
$$\Leftrightarrow \text{Not } (f(x) \in A)$$
$$\Leftrightarrow \text{Not } (x \in f^{-1}(A))$$
$$\Leftrightarrow x \notin f^{-1}(A)$$
$$\Leftrightarrow x \in (f^{-1}(A))^c$$