HOMEWORK 8 - SELECTED BOOK SOLUTIONS

17.8(в)

Case 1: $f(x) \leq g(x)$
In this case $\min (f, g)=f$, but, since $-f \geq-g$, we have $\max (-f,-g)=$ $-f$, and therefore

$$
-\max (-f,-g)=-(-f)=f=\min (f, g) \checkmark
$$

Case 1: $g(x) \leq f(x)$
In this case $\min (f, g)=g$, but, since $-g \geq-f$, we have $\max (-f,-g)=$ $-g$, and therefore

$$
-\max (-f,-g)=-(-g)=f=\min (f, g) \checkmark
$$

17.12(A)

Let $x \in(a, b)$, then since \mathbb{Q} is dense in \mathbb{R}, there is a sequence $\left(x_{n}\right)$ of rational numbers converging to x. But then, on the other hand, $f\left(x_{n}\right) \rightarrow f(x)$ since f is continuous. And, on the other hand, since $f\left(x_{n}\right)=0$ (since x_{n} is rational), we get $f(x)=0$
17.12(B)

Consider $h(x)=f(x)-g(x)$. Then h is continuous, being the difference of continuous functions. Moreover, if r is rational, then $h(r)=$
$f(r)-g(r)=0-0=0$, therefore by part (a), we have $h(x)=0$ for all x, and so $f(x)-g(x)=0$, that is $f(x)=g(x)$ for all x

17.13(A)

Case 1: If x is irrational, then since \mathbb{Q} is dense in \mathbb{R}, let x_{n} be a sequence of rational numbers converging to x, but then

$$
f\left(x_{n}\right)=1 \nrightarrow 0=f(x)
$$

Therefore f is discontinuous at irrational x
Case 2: If x is rational, let $x_{n}=x+\frac{\sqrt{2}}{n}$. Then x_{n} is irrational (otherwise $\sqrt{2}=n\left(x_{n}-x\right)$ would be rational), and $x_{n} \rightarrow x$, but

$$
f\left(x_{n}\right)=0 \nrightarrow 1=f(x)
$$

Hence f is discontinuous at rational x

$$
17.13(\text { в })
$$

First of all, let's show that h is continuous at $x=0$. Let $\epsilon>0$ be given and let $\delta=\epsilon>0$, then if $|x|<\delta$, then

$$
|h(x)-h(0)|=|h(x)| \leq|x|<\epsilon \checkmark
$$

(Here we used $|h(x)| \leq|x|$, which you can show by cases)
Therefore h is continuous at x

Now if $x \neq 0$ is irrational, then, since \mathbb{Q} is dense in \mathbb{R}, let x_{n} be a sequence of rational numbers converging to x, but then

$$
h\left(x_{n}\right)=x_{n} \rightarrow x \neq 0=h(x)
$$

Hence h is discontinuous at irrational x
And if $x \neq 0$ is rational, then let $x_{n}=x+\frac{\sqrt{2}}{n}$, which is a sequence of irrational numbers converging to x, but then

$$
h\left(x_{n}\right)=0 \rightarrow 0 \neq x=h(x)
$$

Hence h is discontinuous at rational x
17.14

STEP 1: Suppose x_{0} is rational, and let's show that f is discontinuous at x_{0}. let $x_{n}=x+\frac{\sqrt{2}}{n}$. Then x_{n} is a sequence of irrational numbers converging to x_{0}, but then

$$
f\left(x_{n}\right)=0 \nrightarrow f\left(x_{0}\right) \neq 0
$$

And therefore f is discontinuous at x_{0}.
And if $x_{0}=0$, then let $x_{n}=\frac{1}{n} \rightarrow 0$, then $x_{n} \rightarrow x_{0}$ but then

$$
f\left(x_{n}\right)=\frac{1}{n} \rightarrow 0 \neq 1=f(0)
$$

Therefore f is also discontinuous at 0
Hence f is discontinuous at all the rational numbers
STEP 2: Suppose x_{0} is irrational, and let $\epsilon>0$ be given.
Then let N be such that $\frac{1}{N}<\epsilon$
Now let δ be so small such that there are no integers in $\left(x_{0}-\delta, x_{0}+\delta\right)$ and no fractions with denominator 2 , no fractions with denominator
$3, \ldots$ and no fractions with denominator $\frac{1}{N}$.
Then, if $\left|x-x_{0}\right|<\delta$ and x is irrational, then

$$
\left|f(x)-f\left(x_{0}\right)\right|=|0-0|=0<\epsilon \checkmark
$$

And if $x=\frac{p}{q}$ is rational (where p and q have no common factors and $q>0$), then by the above we must have $q>N$, and so

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|\frac{1}{q}-0\right|=\frac{1}{q}<\frac{1}{N}<\epsilon
$$

Therefore f is continuous at $x_{0} \checkmark$
And hence f is continuous at all irrational numbers and discontinuous at all rational numbers.
18.9

Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ where $n \geq 1$ is odd and $a_{n} \neq 0$.
Assume WLOG that $a_{n}>0$ (consider $-f$ otherwise)
Notice

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} x^{n}\left(\frac{a_{0}}{x^{n}}+\frac{a_{1}}{x^{n-1}}+\cdots+a_{n}\right) \\
& =\infty \times a_{0} \\
& =\infty
\end{aligned}
$$

And therefore in particular there is $b>0$ large enough such that $f(b)>0$

On the other hand,

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} x^{n}\left(\frac{a_{0}}{x^{n}}+\frac{a_{1}}{x^{n-1}}+\cdots+a_{n}\right) \\
& =(-\infty)^{n} \times a_{0} \\
& =-\infty \times a_{0}(\text { Since } n \text { is odd }) \\
& =-\infty
\end{aligned}
$$

And therefore there is $a<0$ large enough such that $f(a)<0$
Since f is continuous on $[a, b]$ (see for example $17.5(\mathrm{~b})$), by the Intermediate Value Theorem with $c=0$, there is $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=0$, so f has a root in (a, b)
18.10

If $f(0)=f(1)$, then we're done (just let $x=0$ or $x=1$), so WLOG assume $f(0)<f(1)$, since the case $f(0)>f(1)$ is similar.

Let $g(x)=f(x+1)-f(x)$, which is continuous on $[0,1]$ since f is continuous

Then $g(0)=f(1)-f(0)>0$ and $g(1)=f(2)-f(1)=f(0)-f(1)<0$
Therefore by the Intermediate Value Theorem with $c=0$, there is x_{0} in $[0,1]$ such that $g\left(x_{0}\right)=0$, that is $f\left(x_{0}+1\right)-f\left(x_{0}\right)=0$ so $f\left(x_{0}+1\right)=f\left(x_{0}\right)$.

Therefore if you let $x=x_{0} \in[0,1]$ and $y=x_{0}+1 \in[1,2]$, then by the above we get $|x-y|=\left|x_{0}-\left(x_{0}+1\right)\right|=|-1|=1$ and $f(x)=f\left(x_{0}\right)=$ $f\left(x_{0}+1\right)=f(y) \checkmark$

$$
18.12
$$

The fact that f is discontinuous at 0 was shown in Exercise 17.10(b)
Let's show that f has the intermediate value property:
Suppose $a<b$ and c is a value between $f(a)$ and $f(b)$
Now if $a<b<0$ or $0<a<b$, then we're done because f would be continuous on $[a, b]$ and hence have the intermediate value property.

Therefore assume $a \leq 0 \leq b$ and since $a \neq b$, we must have either $a<0$ or $b>0$. WLOG, assume $b>0$

Since $\sin (x)$ is continuous on $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ and c is (in particular) between -1 and 1 , there is x between $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ such that $\sin (x)=c$.

Now let $x_{0}=: \frac{1}{x+2 \pi n}$, where n is so large such that $x_{0} \in(0, b)$ (we can do that since x_{0} goes to 0 as n goes to $\left.\infty\right)$. Then:

$$
f\left(x_{0}\right)=\sin \left(\frac{1}{x_{0}}\right)=\sin (x+2 \pi n)=\sin (x)=c \checkmark
$$

