MATH 409 - HOMEWORK 9

Reading: Sections 19 and 20. In section 19, ignore Example 3 and Discussion 19.3 and the proof of Theorem 19.5. I will go through section 20 fairly quickly, because it's very similar to the sections on continuity. The book's notation for limits (with a^{S}) is a bit confusing, so it's ok if you just use my notation.

- Section 19: 2, 4, 5, 6, 8
- Section 20: 11, 20(a)(b) (see Note), AP1, AP2, AP3

Note: For Problem 20, please do this directly, without using Exercise 9.11 or Theorem 9.9. Do not use sequences.

Additional Problem 1: Use the $\epsilon-\delta$ definition of limits (or variations thereof) to show
(a) $\lim _{x \rightarrow 2} 3 x+5=11$
(b) $\lim _{x \rightarrow 3} x^{2}=9$
(c) $\lim _{x \rightarrow 4} \sqrt{x}=2$
(d) $\lim _{x \rightarrow 1} \frac{1}{x}=1$
(e) $\lim _{x \rightarrow 5^{+}} \frac{1}{x-5}=\infty$
(f) $\lim _{x \rightarrow \infty} 3+\frac{2}{x^{2}}=3$

[^0]Additional Problem 2: Use $\epsilon-\delta$ to prove the Squeeze Theorem: If $f(x) \leq g(x) \leq h(x)$ and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$ (finite), then $\lim _{x \rightarrow a} g(x)=L$ as well.

Additional Problem 3:

(a) Use the hints at the end to show

$$
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1
$$

(b) Use (a) to show that

$$
\lim _{\theta \rightarrow 0} \frac{\cos (\theta)-1}{\theta}=0
$$

(Hints on the next page)

Hints:

19.4(a) By "assume not", the book means that there is a sequence (x_{n}) in S such that $\left|f\left(x_{n}\right)\right| \rightarrow \infty$. Remember that convergent sequences are Cauchy, and that Cauchy sequences are bounded.
19.6(a) Use that $f(x)=\sqrt{x}$ is continuous on $[0, \infty)$, hence uniformly continuous on $[0,1]$ (which is closed and bounded)
20.11 Here you don't need to use $\epsilon-\delta$, use the usual limit laws. Of course do not use derivatives or L'Hôpital's rule here
20.20 For (a), it might be useful to let $\epsilon=1$ in the definition of L_{2}. For (b), let $\epsilon=\frac{L_{2}}{2}$.

AP 1 Solutions to parts (a)-(e) can be found in the videos below. Part (f) is covered at the end of the Lecture 19 notes. The only tricky part is for (d), you can't just assume $|x-1|<1$, you need to assume $|x-1|<\frac{1}{2}$

Video 1: Part (a)
Video 2: Part (b)
Video 3: Part (c)
Video 4: Part (d)
Video 5: Part (e)
AP 2 Solutions can be found here: Squeeze Theorem Proof

AP 3(a) First do the limit as $\theta \rightarrow 0^{+}$. Use the squeeze theorem. On the one hand, the height $A C$ is less than the length l of the arc of the circle (left picture). On the other hand, the area α of the sector is less than the area of the triangle $O B D$ (right picture). Use similar triangles. Here the quarter circle has radius 1.

Finally, for the limit as $\theta \rightarrow 0^{-}$, use that $\frac{\sin (\theta)}{\theta}$ is even.
The solutions can be found in the following video: $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$
AP 3(b) Multiply both sides by $\frac{\cos (\theta)+1}{\cos (\theta)+1}$

[^0]: Date: Due: Friday, November 12, 2021.

