HOMEWORK 9 - SELECTED BOOK SOLUTIONS

19.2(A)

STEP 1: Scratchwork

$|f(x)-f(y)|=|3 x+11-(3 y+11)|=|3 x-3 y|=3|x-y|<\epsilon \Rightarrow|x-y|<\frac{\epsilon}{3}$

STEP 2: Actual Proof

Let $\epsilon>0$ be given, let $\delta=\frac{\epsilon}{3}$, then if $|x-y|<\delta$ then

$$
\begin{gathered}
|f(x)-f(y)|=3|x-y|<3\left(\frac{\epsilon}{3}\right)=\epsilon \checkmark \\
19.2(\text { В })
\end{gathered}
$$

STEP 1: Scratchwork

$$
|f(x)-f(y)|=\left|x^{2}-y^{2}\right|=|x-y||x+y|
$$

Now since $0 \leq x, y \leq 3$, we have $|x| \leq 3$ and $|y| \leq 3$ and so

$$
|x+y| \leq|x|+|y|=3+3=6
$$

And therefore

$$
|x-y||x+y| \leq|x-y|(|x|+|y|) \leq 6|x-y|<\epsilon \Rightarrow|x-y|<\frac{\epsilon}{6}
$$

STEP 2: Actual Proof

Date: Friday, November 12, 2021.

Let $\epsilon>0$ be given, let $\delta=\frac{\epsilon}{6}$, then if $|x-y|<\delta$ then since $0 \leq x, y \leq 3$ we have $|x| \leq 3$ and $|y| \leq 3$ and therefore

$$
|f(x)-f(y)|=|x-y||x+y| \leq|x-y|(|x|+|y|) \leq 6|x-y|<6\left(\frac{\epsilon}{6}\right)=\epsilon \checkmark
$$

$$
19.2(\mathrm{c})
$$

STEP 1: Scratchwork

$$
|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=\left|\frac{y-x}{x y}\right|=\frac{|x-y|}{|x||y|}
$$

Now since $x, y \geq \frac{1}{2}$, we have $|x| \geq \frac{1}{2}$ and $|y| \geq \frac{1}{y}$ and so $\frac{1}{|x|} \leq 2$ and $\frac{1}{|y|} \leq 2$ and so

$$
\frac{|x-y|}{|x||y|} \leq|x-y|(2)(2)=4|x-y|<\epsilon \Rightarrow|x-y|<\frac{\epsilon}{4}
$$

STEP 2: Actual Proof

Let $\epsilon>0$ be given, let $\delta=\frac{\epsilon}{4}$, then if $|x-y|<\delta$ then since $x, y \geq \frac{1}{2}$ we have $|x| \leq \frac{1}{2}$ and $|y| \leq \frac{1}{2}$ and therefore
$|f(x)-f(y)|=|x-y||x y| \leq|x-y|(2 \times 2) \leq 4|x-y|<4\left(\frac{\epsilon}{4}\right)=\epsilon \checkmark$
19.4

Assume f is not bounded on S, then there is a sequence $\left(x_{n}\right)$ in S such that $\left|f\left(x_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

But since $\left(x_{n}\right)$ is in S and S is bounded, then $\left(x_{n}\right)$ is bounded, and so, by the Bolzano-Weierstrass Theorem, $\left(x_{n}\right)$ has a convergent subsequence ($x_{n_{k}}$)

But since $\left(x_{n_{k}}\right)$ is convergent, it is Cauchy, and therefore, since f is uniformly continuous, $f\left(x_{n_{k}}\right)$ is Cauchy as well.

However, since Cauchy sequences are bounded (Lemma 10.10 in section 10), $f\left(x_{n_{k}}\right)$ is bounded, but this contradict the fact that $\left|f\left(x_{n}\right)\right| \rightarrow \infty$ and therefore $\left|f\left(x_{n_{k}}\right)\right| \rightarrow \infty$

For (b), note that even though $(0,1)$ is bounded, $f(x)=\frac{1}{x^{2}}$ is not bounded on $(0,1)$ (because if $|f(x)|<M$ for all x, let $x=\frac{1}{\sqrt{M}} \in(0,1)$ (if $M>1$), then $|f(x)|=M$ which is not $<M$), therefore by $(a), f$ is not uniformly continuous on $(0,1)$

$$
19.5
$$

(a) Since $\left[0, \frac{\pi}{4}\right]$ is compact and $f(x)=\tan (x)$ is continuous, f is uniformly continuous by Theorem 19.2
(b) Even though $\left[0, \frac{\pi}{2}\right)$ is bounded, $f(x)=\tan (x)$ is not bounded. And therefore f is not uniformly continuous by 19.4(a)
(c) Notice that if you let $\tilde{f}(x)=\frac{1}{x} \sin ^{2}(x)$ if $x \neq 0$ and $\tilde{f}(0)=0$, then $\tilde{f}(x)=\tilde{h}(x) \sin (x)$ (where $\tilde{h}(x)$ is as in Example 9) And since $\tilde{h}(x)$ is continuous on $[0, \pi]$, we get $\tilde{f}(x)$ is continuous on $[0, \pi]$. Hence \tilde{f} is a continuous extension of $\frac{1}{x} \sin ^{2}(x)$ on $[0, \pi]$, and therefore $\frac{1}{x} \sin ^{2}(x)$ is uniformly continuous on $(0, \pi]$
(d) $\frac{1}{x-3}$ is unbounded on $(0,3)$, and therefore by 19.4(b), $\frac{1}{x-3}$ is not uniformly continuous on $(0,3)$
(e) $\frac{1}{x-3}$ is unbounded on $(3,4)$ (If $M>1$ is given, let $x=3+\frac{1}{M} \in$ $(3,4)$, then $\frac{1}{x-3}>M$, and therefore by $19.4(\mathrm{~b}), \frac{1}{x-3}$ is not uniformly continuous on $(3,4)$ and hence not uniformly continuous on $(3, \infty)$
(f) Consider $f(x)=\frac{1}{x-3}$, then f is continuous on $(4, \infty)$ since $x-$ $3 \neq 0$ and moreover $f^{\prime}(x)=\frac{-1}{(x-3)^{2}}$ and therefore

$$
\left|f^{\prime}(x)\right|=\left|\frac{-1}{(x-3)^{2}}\right|=\frac{1}{(x-3)^{2}}<1
$$

Therefore $f^{\prime}(x)$ is bounded on $(4, \infty)$ and hence by Theorem $19.6, f$ is uniformly continuous on $(4, \infty)$

$$
19.6(\mathrm{~A})
$$

Notice that $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, which is unbounded on $(0,1]$: If $M>0$ large enough is given, let $x=\frac{1}{4 M^{2}} \in(0, \infty)$ and therefore $f^{\prime}(x)=\frac{1}{2 \sqrt{\frac{1}{4 M^{2}}}}=$ $\frac{2 M}{2}=M$ and hence $\left|f^{\prime}(x)\right| \geq M$

However, since $f(x)=\sqrt{x}$ is continuous on $[0,1]$, which is closed and bounded, f is uniformly continuous on $[0,1]$, and hence uniformly continuous on $(0,1]$

This problem really shows that f^{\prime} being bounded is just a sufficient condition, not a necessary condition!

This follows since f is continuous on $[1, \infty)$, differentiable on $(1, \infty)$ and

$$
\left|f^{\prime}(x)\right|=\frac{1}{2 \sqrt{x}} \leq \frac{1}{2}
$$

Hence f^{\prime} is bounded on $(1, \infty)$
Optional: Here's a more direct proof of this fact (good practice with the definition)

STEP 1: Scratchwork

$$
\begin{aligned}
|f(x)-f(y)| & =|\sqrt{x}-\sqrt{y}| \\
& =\left|(\sqrt{x}-\sqrt{y})\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right)\right| \\
& =\frac{|x-y|}{\sqrt{x}+\sqrt{y}} \\
& \leq 2|x-y| \quad(\text { Since } x, y \geq 1 \text { and so } \sqrt{x}, \sqrt{y} \geq 1) \\
& <\epsilon
\end{aligned}
$$

Which gives $|x-y|<2 \epsilon$
STEP 2: Actual Proof
Let $\epsilon>0$ be given, let $\delta=2 \epsilon$, then if $x, y \in[1, \infty]$ and $|x-y|<\delta$, then $x, y \geq 1$ so $\sqrt{x}, \sqrt{y} \geq 1$ and so

$$
|\sqrt{x}-\sqrt{y}|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}} \leq \frac{|x-y|}{2}<\frac{2 \epsilon}{2}=\epsilon \checkmark
$$

19.8(A)

Let $f(x)=\sin (x)$. Then the MVT there is c between x and y such that

$$
\begin{aligned}
f(x)-f(y) & =f^{\prime}(c)(x-y) \\
\Rightarrow|f(x)-f(y)| & =\left|f^{\prime}(c)\right||x-y| \\
\Rightarrow|\sin (x)-\sin (y)| & =\underbrace{|\cos (c)|}_{\leq 1}|x-y| \leq|x-y| \checkmark
\end{aligned}
$$

19.8(в)

Let $\epsilon>0$ be given, let $\delta=\epsilon$, then if $|x-y|<\delta$, then by (a), we get

$$
|\sin (x)-\sin (y)| \leq|x-y|<\epsilon \checkmark
$$

20.11(A)

$$
\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a}=\lim _{x \rightarrow a} \frac{(x-a)(x+a)}{x-a}=\lim _{x \rightarrow a} x+a=a+a=2 a
$$

$$
\begin{aligned}
\lim _{x \rightarrow b} \frac{\sqrt{x}-\sqrt{b}}{x-b} & =\lim _{x \rightarrow b} \frac{(\sqrt{x}-\sqrt{b})(\sqrt{x}+\sqrt{b})}{(x-b)(\sqrt{x}+\sqrt{b})} \\
& =\lim _{x \rightarrow b} \frac{x-b}{(x-b)(\sqrt{x}+\sqrt{b})} \\
& =\lim _{x \rightarrow b} \frac{1}{\sqrt{x}+\sqrt{b}} \\
& =\frac{1}{\sqrt{b}+\sqrt{b}} \\
& =\frac{1}{2 \sqrt{b}} \\
& 20.11(\mathrm{C})
\end{aligned}
$$

$\lim _{x \rightarrow a} \frac{x^{3}-a^{3}}{x-a}=\lim _{x \rightarrow a} \frac{(x-a)\left(x^{2}+a x+a^{2}\right)}{x-a}=\lim _{x \rightarrow a} x^{2}+a x+a^{2}=a^{2}+a^{2}+a^{2}=3 a^{2}$

$$
20.20(\mathrm{~A})
$$

Let $M>0$ be given. Then since $\lim _{x \rightarrow a} f_{2}(x)=L_{2}$, with $\epsilon=1$, there is $\delta_{1}>0$ such that if $0<|x-a|<\delta_{1}$ then $\left|f_{2}(x)-L_{2}\right|<1$, so in particular $f_{2}(x)-L_{2}>-1$ so $f_{2}(x)>L_{2}-1$

Now since $\lim _{x \rightarrow a} f_{1}(x)=\infty$, there is $\delta_{2}>0$ such that if $0<|x-a|<$ δ_{2} then $f_{1}(x)>M-\left(L_{2}-1\right)$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ then if $0<|x-a|<\delta$, then $|x-a|<\delta_{1}$ and $\left|x_{a}\right|<\delta_{2}$ and so

$$
\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)>M-\left(L_{2}-1\right)+\left(L_{2}-1\right)=M \checkmark
$$

Hence $\lim _{x \rightarrow a}\left(f_{1}+f_{2}\right)(x)=\infty$
20.20(в)

Let $M>0$ be given. Then since $\lim _{x \rightarrow a} f_{2}(x)=L_{2}$, with $\epsilon=\frac{L_{2}}{2}>0$, there is $\delta_{1}>0$ such that if $0<|x-a|<\delta_{1}$ then $\left|f_{2}(x)-L_{2}\right|<\frac{L_{2}}{2}$, so in particular $f_{2}(x)-L_{2}>-\frac{L_{2}}{2}$ so $f_{2}(x)>L_{2}-\frac{L_{2}}{2}=\frac{L_{2}}{2}>0$

Now since $\lim _{x \rightarrow a} f_{1}(x)=\infty$, there is $\delta_{2}>0$ such that if $0<|x-a|<$ δ_{2} then $f_{1}(x)>\frac{M}{\frac{L_{2}}{2}}$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ then if $0<|x-a|<\delta$, then $|x-a|<\delta_{1}$ and $\left|x_{a}\right|<\delta_{2}$ and so

$$
\left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)>\frac{M}{\frac{L_{2}}{2}} \times \frac{L_{2}}{2}=M \checkmark
$$

Hence $\lim _{x \rightarrow a}\left(f_{1} f_{2}\right)(x)=\infty$

