
HOMEWORK 9 − SELECTED BOOK SOLUTIONS

19.2(a)

STEP 1: Scratchwork

|f(x)− f(y)| = |3x+ 11− (3y + 11)| = |3x− 3y| = 3 |x− y| < ϵ ⇒ |x− y| < ϵ

3

STEP 2: Actual Proof

Let ϵ > 0 be given, let δ = ϵ
3 , then if |x− y| < δ then

|f(x)− f(y)| = 3 |x− y| < 3
( ϵ
3

)
= ϵ✓ □

19.2(b)

STEP 1: Scratchwork

|f(x)− f(y)| =
∣∣x2 − y2

∣∣ = |x− y| |x+ y|
Now since 0 ≤ x, y ≤ 3, we have |x| ≤ 3 and |y| ≤ 3 and so

|x+ y| ≤ |x|+ |y| = 3 + 3 = 6

And therefore

|x− y| |x+ y| ≤ |x− y| (|x|+ |y|) ≤ 6 |x− y| < ϵ ⇒ |x− y| < ϵ

6

STEP 2: Actual Proof
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Let ϵ > 0 be given, let δ = ϵ
6 , then if |x− y| < δ then since 0 ≤ x, y ≤ 3

we have |x| ≤ 3 and |y| ≤ 3 and therefore

|f(x)− f(y)| = |x− y| |x+ y| ≤ |x− y| (|x|+ |y|) ≤ 6 |x− y| < 6
( ϵ
6

)
= ϵ✓ □

19.2(c)

STEP 1: Scratchwork

|f(x)− f(y)| =
∣∣∣∣1x − 1

y

∣∣∣∣ = ∣∣∣∣y − x

xy

∣∣∣∣ = |x− y|
|x| |y|

Now since x, y ≥ 1
2 , we have |x| ≥ 1

2 and |y| ≥ 1
y and so 1

|x| ≤ 2 and
1
|y| ≤ 2 and so

|x− y|
|x| |y|

≤ |x− y| (2)(2) = 4 |x− y| < ϵ ⇒ |x− y| < ϵ

4

STEP 2: Actual Proof

Let ϵ > 0 be given, let δ = ϵ
4 , then if |x− y| < δ then since x, y ≥ 1

2

we have |x| ≤ 1
2 and |y| ≤ 1

2 and therefore

|f(x)− f(y)| = |x− y| |xy| ≤ |x− y| (2× 2) ≤ 4 |x− y| < 4
( ϵ
4

)
= ϵ✓ □

19.4

Assume f is not bounded on S, then there is a sequence (xn) in S such
that |f(xn)| → ∞ as n → ∞.
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But since (xn) is in S and S is bounded, then (xn) is bounded, and
so, by the Bolzano-Weierstrass Theorem, (xn) has a convergent subse-
quence (xnk

)

But since (xnk
) is convergent, it is Cauchy, and therefore, since f is

uniformly continuous, f(xnk
) is Cauchy as well.

However, since Cauchy sequences are bounded (Lemma 10.10 in section
10), f(xnk

) is bounded, but this contradict the fact that |f(xn)| → ∞
and therefore |f(xnk

)| → ∞

For (b), note that even though (0, 1) is bounded, f(x) = 1
x2 is not

bounded on (0, 1) (because if |f(x)| < M for all x, let x = 1√
M

∈ (0, 1)

(if M > 1), then |f(x)| = M which is not < M), therefore by (a), f is
not uniformly continuous on (0, 1)

19.5

(a) Since
[
0, π4

]
is compact and f(x) = tan(x) is continuous, f is

uniformly continuous by Theorem 19.2

(b) Even though
[
0, π2

)
is bounded, f(x) = tan(x) is not bounded.

And therefore f is not uniformly continuous by 19.4(a)

(c) Notice that if you let f̃(x) = 1
x sin

2(x) if x ̸= 0 and f̃(0) = 0,

then f̃(x) = h̃(x) sin(x) (where h̃(x) is as in Example 9) And
since h̃(x) is continuous on [0, π], we get f̃(x) is continuous on
[0, π]. Hence f̃ is a continuous extension of 1

x sin
2(x) on [0, π],

and therefore 1
x sin

2(x) is uniformly continuous on (0, π]

(d) 1
x−3 is unbounded on (0, 3), and therefore by 19.4(b), 1

x−3 is not
uniformly continuous on (0, 3)
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(e) 1
x−3 is unbounded on (3, 4) (If M > 1 is given, let x = 3 + 1

M ∈
(3, 4), then 1

x−3 > M , and therefore by 19.4(b), 1
x−3 is not uni-

formly continuous on (3, 4) and hence not uniformly continuous
on (3,∞)

(f) Consider f(x) = 1
x−3 , then f is continuous on (4,∞) since x−

3 ̸= 0 and moreover f ′(x) = −1
(x−3)2 and therefore

|f ′(x)| =
∣∣∣∣ −1

(x− 3)2

∣∣∣∣ = 1

(x− 3)2
< 1

Therefore f ′(x) is bounded on (4,∞) and hence by Theorem
19.6, f is uniformly continuous on (4,∞)

19.6(a)

Notice that f ′(x) = 1
2
√
x
, which is unbounded on (0, 1]: If M > 0 large

enough is given, let x = 1
4M2 ∈ (0,∞) and therefore f ′(x) = 1

2
√

1
4M2

=

2M
2 = M and hence |f ′(x)| ≥ M

However, since f(x) =
√
x is continuous on [0, 1], which is closed and

bounded, f is uniformly continuous on [0, 1], and hence uniformly con-
tinuous on (0, 1]

This problem really shows that f ′ being bounded is just a sufficient
condition, not a necessary condition!

19.6(b)
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This follows since f is continuous on [1,∞), differentiable on (1,∞)
and

|f ′(x)| = 1

2
√
x
≤ 1

2

Hence f ′ is bounded on (1,∞)

Optional: Here’s a more direct proof of this fact (good practice with
the definition)

STEP 1: Scratchwork

|f(x)− f(y)| =
∣∣√x−√

y
∣∣

=

∣∣∣∣(√x−√
y
)(√

x+
√
y

√
x+

√
y

)∣∣∣∣
=

|x− y|√
x+

√
y

≤2 |x− y| (Since x, y ≥ 1 and so
√
x,
√
y ≥ 1)

<ϵ

Which gives |x− y| < 2ϵ

STEP 2: Actual Proof

Let ϵ > 0 be given, let δ = 2ϵ, then if x, y ∈ [1,∞] and |x− y| < δ,
then x, y ≥ 1 so

√
x,
√
y ≥ 1 and so

∣∣√x−√
y
∣∣ = |x− y|√

x+
√
y
≤ |x− y|

2
<

2ϵ

2
= ϵ✓ □
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19.8(a)

Let f(x) = sin(x). Then the MVT there is c between x and y such
that

f(x)− f(y) =f ′(c)(x− y)

⇒ |f(x)− f(y)| = |f ′(c)| |x− y|
⇒ |sin(x)− sin(y)| = |cos(c)|︸ ︷︷ ︸

≤1

|x− y| ≤ |x− y|✓

19.8(b)

Let ϵ > 0 be given, let δ = ϵ, then if |x− y| < δ, then by (a), we get

|sin(x)− sin(y)| ≤ |x− y| < ϵ✓ □

20.11(a)

lim
x→a

x2 − a2

x− a
= lim

x→a

(x− a)(x+ a)

x− a
= lim

x→a
x+ a = a+ a = 2a

20.11(b)
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lim
x→b

√
x−

√
b

x− b
= lim

x→b

(
√
x−

√
b)(

√
x+

√
b)

(x− b)(
√
x+

√
b)

= lim
x→b

x− b

(x− b)(
√
x+

√
b)

= lim
x→b

1
√
x+

√
b

=
1√

b+
√
b

=
1

2
√
b

20.11(c)

lim
x→a

x3 − a3

x− a
= lim

x→a

(x− a)(x2 + ax+ a2)

x− a
= lim

x→a
x2+ax+a2 = a2+a2+a2 = 3a2

20.20(a)

Let M > 0 be given. Then since limx→a f2(x) = L2, with ϵ = 1, there
is δ1 > 0 such that if 0 < |x− a| < δ1 then |f2(x)− L2| < 1, so in
particular f2(x)− L2 > −1 so f2(x) > L2 − 1

Now since limx→a f1(x) = ∞, there is δ2 > 0 such that if 0 < |x− a| <
δ2 then f1(x) > M − (L2 − 1)

Let δ = min {δ1, δ2} then if 0 < |x− a| < δ, then |x− a| < δ1 and
|xa| < δ2 and so

(f1 + f2)(x) = f1(x) + f2(x) > M − (L2 − 1) + (L2 − 1) = M✓
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Hence limx→a(f1 + f2)(x) = ∞ □

20.20(b)

Let M > 0 be given. Then since limx→a f2(x) = L2, with ϵ = L2

2 > 0,

there is δ1 > 0 such that if 0 < |x− a| < δ1 then |f2(x)− L2| < L2

2 , so

in particular f2(x)− L2 > −L2

2 so f2(x) > L2 − L2

2 = L2

2 > 0

Now since limx→a f1(x) = ∞, there is δ2 > 0 such that if 0 < |x− a| <
δ2 then f1(x) >

M
L2
2

Let δ = min {δ1, δ2} then if 0 < |x− a| < δ, then |x− a| < δ1 and
|xa| < δ2 and so

(f1f2)(x) = f1(x)f2(x) >
M
L2

2

× L2

2
= M✓

Hence limx→a(f1f2)(x) = ∞ □
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