MATH S4062 - HOMEWORK 9

Additional Problem 1:

(a) Show that if E is a countable subset of \mathbb{R}^{d} then E is measurable
(b) Find an uncountable subset of \mathbb{R} of measure 0 that is measurable

Additional Problem 2: Let $E_{1}=\mathcal{N}$ and $E_{2}=\mathcal{N}^{c}$ (the complement is taken in $[0,1]$), where \mathcal{N} is the non-measurable set from lecture, then although E_{1} and E_{2} are disjoint, prove that

$$
m_{\star}\left(E_{1} \cup E_{2}\right) \neq m_{\star}\left(E_{1}\right)+m_{\star}\left(E_{2}\right)
$$

Additional Problem 3: Show that there is a non-negative continuous function f on \mathbb{R} such that $\int_{\mathbb{R}} f(x) d x<\infty$ but $\lim \sup _{x \rightarrow \infty} f(x)=\infty$.

Additional Problem 4: Consider

$$
f_{a}(x)=\left\{\begin{array}{ll}
\frac{1}{|x|^{a}} & \text { if }|x| \leq 1 \\
0 & \text { if }|x|>1
\end{array} \quad \text { and } \quad g_{a}(x)= \begin{cases}0 & \text { if }|x| \leq 1 \\
\frac{1}{|x|^{a}} & \text { if }|x|>1\end{cases}\right.
$$

Show that f_{a} is integrable precisely when $a<d$ and g_{a} is integrable precisely when $a>d$ (see hints). Integrable means that $\int\left|f_{a}\right|<\infty$.

Additional Problem 5: Show that if $\int_{E} f(x) d x=0$ for every measurable E then $f(x)=0$ a.e.

Hints:

Additional Problem 1: For (a) use a $\frac{\epsilon}{2^{n}}$ argument and for (b), consider the Cantor set

Additional Problem 2: The main goal is showing that $m_{\star}\left(\mathcal{N}^{c}\right)=1$. To do this, suppose by contradiction that $m_{\star}\left(\mathcal{N}^{c}\right)<1$. Then there is a measurable set $U \subseteq[0,1]$ such that $\mathcal{N}^{c} \subseteq U$ and $m_{\star}(U)<1-\epsilon$ (no need to prove this). Then consider the translates $\left(U^{c}+r_{k}\right) \subseteq \mathcal{N}_{k}$ (notation as in lecture) and hence $\bigcup_{k}\left(U^{c}+r_{k}\right) \subseteq \bigcup_{k} \mathcal{N}_{k} \subseteq[-1,2]$

Additional Problem 3: Consider the continuous version of the function equal to n on the segment $\left[n, n+\frac{1}{n^{3}}\right)$ for $n \geq 1$. Of course you can integrate the function you usually would in terms of areas

Additional Problem 4: Here is is useful to use the polar coordinates formula (no need to prove)

$$
\int_{\mathbb{R}^{d}} f(x) d x=\int_{0}^{\infty}\left(\int_{|x|=r} f(x) d S(x)\right) d r
$$

Here $S(x)$ is the "surface measure" on the sphere. You're also allowed to assume that the surface measure of $\{|x|=r\}$ is $C(d) r^{d-1}$ where C is some constant (depending on d)

Additional Problem 5: For every $k \geq 1$, consider $E_{k}=\left\{x \in E \left\lvert\, f(x) \geq \frac{1}{k}\right.\right\}$ and notice that $f(x) \geq\left(\frac{1}{k}\right) 1_{E_{k}}(x)$ and write $\{f>0\}$ in terms of E_{k}

