
LECTURE 1: NATURAL AND RATIONAL NUMBERS

1. Introduction

Hello everyone and welcome to Math 409, fun with epsilon! My name
is Peyam and I’ll be your instructor this semester

� Logistics: All the info is on the syllabus, which can be found on
Howdy

� Office Hours: W 3−4:30 pm and Th 2:15−3:45 pm via Zoom.
Please come, I’d be happy to help! You are allowed to request in
person office hours.

� Textbook: Elementary Analysis: The Theory of Calculus (2nd edi-
tion) by Ross. This book is freely available through Springerlink.
There are also some excellent book recommendations on the syllabus.

� Resources: Here are some resources you can use:

• Course Website: For the lecture notes, YouTube videos, and
practice exams. NOT set up yet, so in the meantime everything
is posted on Canvas

• Canvas Check your grades and submit the homework

• Campuswire A really cool forum; use it to ask questions

• YouTube Channel My YouTube channel, for videos related to
this course

Date: Tuesday, August 31, 2021.
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https://tamu.zoom.us/my/drpeyam
https://canvas.tamu.edu/
https://campuswire.com/
https://youtube.com/drpeyam
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• TikTok Channel For other fun videos

� Grading:

• HW 25 %, due every Friday by 11:55 pm on Canvas, with the
exception of Exam Weeks and Thanksgiving. The first HW is
due this Friday; the lowest 3 homework assignments are dropped

• Midterms 20 % each. 2 Midterms, during class, on the fol-
lowing days:

Midterm 1: Thursday, Sep 30

Midterm 2: Thursday, Nov 4

• Final 35 % Wednesday, Dec 15, 8-10 am, cumulative

• Extra Credit 1 %: Given to the top posters on Campuswire

� Grades: You will be graded according to the scale in the syllabus,
so everyone can get an A if they work hard. I will try my best to be
as generous as I can

� Finally: Sit back, relax, and enjoy the show. Teaching this course
is literally a dream come true for me and I hope you’ll enjoy it as
much as I do. There will be lots of suffering, but I promise you that
it’ll be worth it. This is the course that will make you understand
and enjoy math ,

2. What is N?
How does one start an analysis course? It’s like starting the universe;
there are so many different ways of doing it! But let’s begin with the
basic unit of analysis: the natural numbers.

https://www.tiktok.com/@drpeyam?lang=en
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Video: What is a number?

Notation: N = {1, 2, 3, · · · }

This is the definition that you’ve known your whole life... except it
makes no sense! What even is a number? And what makes N differ-
ent from the integers Z or the real numbers R? There are two special
features of N:

(1) N has a smallest element, called 1

(2) Every integer n has a successor n+1, as in the following picture:

But then how do you define N? I’d like to mention that there’s an
explicit way of constructing N (see HW), but in this course we take an
axiomatic approach. An axiom is like a rule to a game; math is the
art of combining axioms to get meaningful statements.

https://youtu.be/Fcm93baNn2Q
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Peano’s Axioms:

There is a set N such that:

(1) 1 is in N

(2) If n ∈ N, then its successor n+ 1 ∈ N

(3) 1 is not the successor of any element in N (see picture
above)

(4) n ̸= m ⇒ n+ 1 ̸= m+ 1 (different numbers have different
successors)

(5) Induction Axiom (see below)

Those axioms should hopefully seem reasonable to you. Using them,
we can define 2 = 1 + 1 (successor of 1), 3 = 2 + 1 (successor of 2)
and so on. Can we reach all numbers in that way, by using successors?
The next axiom says yes:

“Induction” Axiom:

Suppose S is a subset of N such that:

(1) 1 ∈ S

(2) If n ∈ S, then n+ 1 ∈ S

Then S = N
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What is this saying? Since 1 is in S, its successor 1 + 1 = 2 is also in
S, hence 2 + 1 = 3 is also in S, and hence 4 is in S and so forth. In
theory, it’s possible that we’re skipping natural numbers that way, but
(5) says that it is not so; S must indeed be all of N.

This is certainly not true for R: If you jump from 1 to 2, then you’re
skipping lots of real numbers like 3

2 ,
√
2, π2

Note: Below I’ll explain why it’s called an induction axiom. Also, in
the optional appendix (at the end), you can see a small proof that puts
(5) in action.
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3. Mini Analysis Proof

To give you a taste of how a typical analysis proof works, let me give
you a “proof” as to why (5) is true. I would like to emphasize that it
is not an actual proof, see below as to why it isn’t.

“Proof” of (5): Suppose (5) were false, that is there is a subset S of
N that satisfies (1) and (2), but S ̸= N.

Let n0 be the first/smallest number that is not in S:

Notice n0 ̸= 1, because 1 ∈ S but n0 /∈ S

Moreover, since n0 is the smallest nonmember of S, we must have
n0 − 1 ∈ S (otherwise n0 − 1 would be an even smaller nonmember)

But since n0− 1 ∈ S, then by (2), (n0− 1)+1 = n0 ∈ S, which contra-
dicts n0 /∈ S ⇒⇐ □

Note: This is not a proof because, first of all, what does n0 − 1 even
mean? We don’t know that n0 is the successor of a number.

More importantly, even though there are numbers not in S, how do we
know there is a smallest such number? We could have a situation like
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follows where there’s a continuum of numbers not in S:

This will be extremely important in Section 4.

4. Induction

Video: What is Induction?

(5) is called the Induction Axiom is because it is the basis of:

Mathematical Induction:

Let Pn be a proposition and suppose

(1) P1 is true

(2) For all n ∈ N, if Pn is true, then Pn+1 is true

Then Pn is true for all n ∈ N

(Notice how similar this is to (5))

https://youtu.be/GRzEhKPkRHE
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Example 1:

Show by induction on n that if r ̸= 1 and n ≥ 1, then:

1 + r + r2 + · · ·+ rn =
1− rn+1

1− r

Advice: On your homework and exams, it’s very important to be as
thorough as possible Everything I say below is important. Do not skip
steps in your proof, even those that are “obvious” to you! If in doubt,
write it out.

Let Pn be the proposition:

1 + r + r2 + · · ·+ rn =
1− rn+1

1− r

Base Case: Show P1 is true, that is:
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1 + r =
1− r2

1− r
But

1− r2

1− r
=

(1− r)(1 + r)

1− r
= 1 + r

Inductive Step: Suppose Pn is true, that is:

1 + r + r2 + · · ·+ rn =
1− rn+1

1− r

Show Pn+1 is true, that is:

1 + r + r2 + · · ·+ rn+1 =
1− rn+2

1− r
But:

1 + r + r2 + · · ·+ rn+1 =(1 + r + · · ·+ rn) + rn+1

=
1− rn+1

1− r
+ rn+1 By the inductive hypothesis

=
1− rn+1 + rn+1(1− r)

1− r

=
1−���

rn+1 +���
rn+1 − rn+2

1− r

=
1− rn+2

1− r

Therefore Pn+1 is true, and hence Pn is true, that is, for all n ∈ N,

1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
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5. Triangle Inequality

Video: Induction Example

Analysis not only deals with numbers, but also with functions, so let’s
do one more induction example, but with functions. For this we’ll need
one of the most important inequalities of this course:

IMPORTANT: Triangle Inequality:

If a and b are real numbers, then

|a+ b| ≤ |a|+ |b|

Interpretation: The third leg of a triangle is always smaller than (or
equal to) the sum of the other two legs.

https://youtu.be/AQf0cpe8xM0
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Example 2:

Show that for all n ∈ N and all x ∈ R, we have

|sin(nx)| ≤ n |sin(x)|

Picture: The picture illustrates the case n = 3 (Courtesy Wolfram
Alpha)

Let Pn be the proposition: For all x ∈ R, |sin(nx)| ≤ n |sin(x)|

Base Case: For n = 1, we have |sin(1x)| ≤ 1 |sin(x)| .
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Inductive Step: Suppose Pn is true, that is |sin(nx)| ≤ n |sin(x)|.

Show Pn+1 is true, that is: |sin((n+ 1)x)| ≤ (n+ 1) |sin(x)|. But:

|sin((n+ 1)x)| = |sin(nx+ x)|
= |sin(nx) cos(x) + cos(nx) sin(x)|

Here we used sin(A+B) = sin(A) cos(B) + cos(A) sin(B)

≤ |sin(nx)| |cos(x)|︸ ︷︷ ︸
≤1

+ |cos(nx)|︸ ︷︷ ︸
≤1

|sin(x)|

(By the Triangle Inequality)

≤|sin(nx)|+ |sin(x)|
≤n |sin(x)|+ |sin(x)| (By the inductive hypothesis)

=(n+ 1) |sin(x)|

Therefore Pn+1 is true, and hence Pn is true for all n, that is |sin(nx)| ≤
n |sin(x)| for all x. □

6. (Ir)rational Numbers

Video:
√
2 is irrational

Now that we we’ve learned about natural numbers, let’s talk about
rational numbers!

Definition:

We say x is rational (and we write x ∈ Q) if x = p
q where p and

q are integers with q ̸= 0

https://youtu.be/J8Dmqje6Uh8
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Not every number is rational and in fact the following is one of the
most classical theorems in all of math:

Theorem:
√
2 is irrational

Proof: Suppose
√
2 = p

q , where p and q ̸= 0 are integers.

Without loss of generality (WLOG), assume that p and q have no fac-
tors in common

(Why? Say p and q have a factor of 3 in common, then p = 3k and
q = 3l. But then p

q = 3k
3l =

k
l and you can just repeat the same proof

with k and l instead of p and q)

Squaring both sides of
√
2 = p

q , you get p2

q2 = 2, so p2 = 2q2.

But then p2 is even, so p is even (Why? The contrapositive statement
is: If p is odd, then p2 is odd, which you can show using the definition
of odd1), so p = 2m for some integer m

But then:

p2 = 2q2 ⇒ (2m)2 = 2q2 ⇒ 4m2 = 2q2 ⇒ q2 = 2m2

But then q2 is even, so q is even, so q = 2n for some integer n.

But then p and q have a factor of 2 in common, which contradicts
WLOG. ⇒⇐ □

1If p is odd, then p = 2k + 1, so p2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 = 2n+ 1 for
n = 2k2 + 2k ∈ Z
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Note: Essentially, this is saying that, if
√
2 were a fraction, then it

would be a fraction with infinitely many factors of 2 that would cancel
out, like

√
2 =

��2��2��2 · · ·
��2��2��2 · · ·

Which, strictly speaking, makes no sense. Fractions should have an
end!

Remarks:
(1) There are other kinds of irrational numbers, like

√
3, 3
√
2, log2(3),

but also e and π. In case you’re curious, feel free to check out
the following optional videos: e is irrational and π is irrational

(2) Since Q is countable but R is uncountable (see this optional
video as to why), there are many more irrational numbers than
rational numbers. In fact, if you pick a real number at random,
the probability that it’s irrational is 1! (WOW!)

(3) In case you’re wondering how to actually construct Q, there’s a
very elegant way of constructing rational numbers from integers,
which you can find on the next homework or in this video: What
is Q?

7. Algebraic Numbers

Video: Algebraic Numbers

Although
√
2 is irrational, it’s not very bad because it is a zero of a

polynomial with integer coefficients, namely x2 − 2. We call such kind
of numbers algebraic:

https://www.youtube.com/watch?v=FPHF-bkfydk
https://www.youtube.com/watch?v=bLewajrQ12E
https://www.youtube.com/watch?v=H_-2E6B6OrY
https://youtu.be/LyEYRMZ4TWI
https://youtu.be/LyEYRMZ4TWI
https://youtu.be/ghHRLiiTeFU
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Definition:

A real number x is called algebraic if it is the root of a poly-
nomial with integers coefficients. That is, there exist integers
an, an−1, · · · , a1, a0 (with an ̸= 0) such that

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0

Example:

Is x = 3

√√
2−3
5 algebraic? (It sure looks horrible, doesn’t it!)

x =
3

√√
2− 3

5

⇒ x3 =

√
2− 3

5
⇒ 5x3 =

√
2− 3

⇒
√
2 =5x3 + 3

⇒ 2 =(5x3 + 3)2

⇒ 2 =25x6 + 30x3 + 9

⇒25x6 + 30x3 + 7 = 0

So YES (“It’s not a bad number”)

Definition:

If x is not algebraic, then x called transcendental
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(Like your “favorite” Calculus book2 Stewart’s Calculus, Early Tran-
scendentals)

The two most famous transcendental numbers are e and π, see the
following optional videos for proofs: e is transcendental and π is tran-
scendental)

Note: Again, you can show that the algebraic numbers are countable
(see the next homework or this video), so because R is uncountable,
there are many more transcendental numbers than algebraic ones.

The following picture summarizes the dichotomy between rational vs.
irrational numbers, and algebraic vs. transcendental numbers.

2Not!

https://www.youtube.com/watch?v=Gxe6cLEuTBA
https://www.youtube.com/watch?v=TlQGX38Vc-o
https://www.youtube.com/watch?v=TlQGX38Vc-o
https://www.youtube.com/watch?v=wePUkYJTXWc
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8. Optional Appendix: Axiomatic Proof

In case you’re curious about how to apply (5) in math, here’s a state-
ment that’s hopefully obvious to you, but not as obvious to show:

Claim

For all n ∈ N, n+ 1 ̸= n

Proof: Let S be the set of n ∈ N such that n+ 1 ̸= n.

First of all, 1 ∈ S, because even though 1 + 1 is a successor of an
element of N (namely of 1), 1 is not a successor of any element in N
by Axiom (3). Hence 1 + 1 ̸= 1, so by definition of S, 1 ∈ S

Now suppose n ∈ S, that is n ̸= n + 1, but then by Axiom (4),
n+1 ̸= n+1+1, so (n+1) ̸= (n+1)+1 so by definition of S, we have
n+ 1 ∈ S

So by (5), we have S = N, that is for all n ∈ N, we have n+1 ̸= n □
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