
LECTURE 1: SEQUENCES OF FUNCTIONS

1. Introduction

Hello everyone and welcome to Math 4062, an exciting Analysis ad-
venture awaits you! My name is Peyam and I’ll be your instructor this
summer.

• Logistics: All the info is on the syllabus, which can be found on the
Course Website

• Lectures: MTWTh 10:45-12:20 pm in 312 Math Building. Atten-
dance is optional, although I highly recommend coming to lecture

• Office Hours: MTWTh 12:30-1:15 pm in 600 Math Building. Please
come, I’d be happy to help

• Textbook: Our official textbook is Principles of Mathematical Anal-
ysis by Rudin. I’m not always going to follow the textbook, so I
highly recommend reading the lecture notes.

• Resources: Here are some resources you can use:

• Course Website Lecture notes, homework, and study material.

• Canvas Submit the homework and check your grades

• Piazza A really cool forum; use it to ask questions

• YouTube Channel My YouTube channel, some videos will be
related to this course

Date: Tuesday, July 5, 2022.
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http://people.tamu.edu/~tabrizianpeyam/Math%204062/math4062.html
http://people.tamu.edu/~tabrizianpeyam/Math%204062/math4062.html
https://cas.columbia.edu/cas/login?service=https%3A%2F%2Fcourseworks2.columbia.edu%2Flogin%2Fcas
https://piazza.com/
https://youtube.com/drpeyam
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• Grading:

• HW 35% due every TuTh by 11:59 pm on Canvas, with the
exception of exam days. The first HW is due this Thursday;
the lowest homework is dropped. There will be quite a bit of
homework, but remember that it’s also worth a lot of your grade.

• Midterm 25% One in-class midterm on Tuesday, July 26.
Exams are closed book and closed notes

• Final 40% One in-class final on Thursday, August 11, cu-
mulative

• Extra Credit 1% Given to the 10 top posters on Piazza

• Grades: You will be graded according to the scale in the syllabus,
so everyone can get an A if they work hard. I will curve the grades
if they are too low, and try my best to be as generous as I can

• Finally: Sit back, relax, and enjoy the show. Teaching this course
is literally a dream come true for me and I hope you’ll enjoy it as
much as I do. There will be lots of suffering, but I promise you that
it’ll be worth it. ,

2. Sequences of Functions

Previously: (in Analysis I) You learned what it means for a sequence
(sn) to converge to s:

Definition: sn → s if for all ε > 0 there is N such that for all n if
n > N then |sn − s| < ε.

That is, eventually all the terms of (sn) are as close to s as you want.
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Our goal in this chapter is to generalize this to functions: what does
it mean for a sequence of functions (fn) to converge to f?

The simplest idea is just to consider convergence at every point:

Definition: fn → f pointwise if, for every x, we have

lim
n→∞

fn(x) = f(x)

Example: Let fn : [0, 1] → R defined by fn(x) = xn. What function
does fn converge to pointwise?

If 0 ≤ x < 1, then limn→∞ x
n = 0

If x = 1 then fn(1) = 1n = 1→ 1

Therefore, fn converges pointwise to:

f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1

Notice: Even though each fn is continuous on [0, 1], the limit function
f fails to be continuous!

So although the notion of pointwise convergence is intuitive, it’s bad in
the sense that many properties such as continuity or differentiability
are lost under pointwise convergence.

What we need is a notion called uniform convergence which is
harder to understand at first, but much more powerful.
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3. Uniform Convergence

Uniform here means “independent,” the convergence is independent of
x (the same for all x)

Definition: fn → f uniformly if for all ε > 0 there is N such that
for all x, if n > N , then we have

|fn(x)− f(x)| < ε

The point is that here the N is independent of x, it works for all x.

Graphically: Notice

|fn − f | < ε⇒ f − ε < fn < f + ε

So for all large n, the graph of fn is contained in an ε-tube around
the graph of f . This is not the case for non-uniform convergence. (see
pictures in lecture)

Example: The sequence fn : [0, 2] → R defined by the piecewise
linear function connecting (0, 0), (1, 1n), (2, 0) converges uniformly to
f(x) = 0. No matter how small, every ε−tube around f eventually
contains all fn for n large enough.

Let’s now see how awesome this concept is! More precisely, we’ll see
that many properties of functions (such as continuity and differentia-
bility) is preserved under uniform convergence

4. Uniform Convergence and Continuity
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Theorem: (Continuity) If fn → f uniformly and each fn is contin-
uous at x0, then f is continuous at x0.

Proof:1 This is a typical ε
3 proof:

Let ε > 0 and x0 be given. We need to find δ > 0 such that for all x,
if |x− x0| < δ then |f(x)− f(x0)| < ε.

STEP 1: Since fn → f uniformly, there is N such that for all n ≥ N
and all x, we have

|fn(x)− f(x)| < ε

3
STEP 2: Since fN is continuous at x0 there is δ > 0 such that
|x− x0| < δ implies

|fN(x)− fN(x0)| <
ε

3

STEP 3: With that δ, if |x− x0| < δ, we get

|f(x)− f(x0)| = |f(x)− fN(x) + fN(x)− fN(x0) + fN(x0)− f(x0)|
≤ |f(x)− fN(x)|+ |fN(x)− fN(x0)|+ |fN(x0)− f(x0)|

<
ε

3
+
ε

3
+
ε

3
=εX

Here we used uniform convergence, continuity of fN , and uniform con-
vergence again, �

Note: Uniform convergence is essential here, as the xn example shows.
Even worse, sometimes the limit function f is nowhere continuous (see

1This proof is taken from Pugh’s book, Chapter 4 Theorem 1
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Example 7.4 in Rudin)

5. Uniform Convergence and Integration

Theorem: If fn → f uniformly and each fn is Riemann integrable on
[a, b], then so is f , and

∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx

In other words, fn → f ⇒
∫
fn →

∫
f we can integrate the uniform

convergence without feeling guilty.

Note: This is very useful in practice: f is usually a complicated func-
tion (think ex

2

), but which can be approximated by simpler functions

fn (think polynomials). This says that to calculate
∫ b
a f(x)dx (hard),

you just take the limit of the approximate integrals
∫ b
a fn(x)dx (easy)

Proof: Recall that integrable just means that
∫
fdx =

∫
fdx

STEP 1: Define εn as:

εn = sup {|fn(x)− f(x)| | x ∈ [a, b]}

Intuitively, εn is the biggest possible spread between fn and f (see pic-
ture in lecture)

Since fn → f uniformly, we have limn→∞ εn = 0 (we will discuss this
fact in detail later)

STEP 2: By definition of εn we have
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|fn − f | ≤ εn ⇒ fn − εn ≤ f ≤ fn + εn

Lower and upper integrating on [a, b], we get∫
fn − εndx ≤

∫
fdx and

∫
fdx ≤

∫
fn + εndx

But since fn ± εn are integrable, we can remove the bar and get∫ b

a

fn − εn ≤
∫
fdx ≤

∫
fdx ≤

∫ b

a

fn + εndx

STEP 3: This in turn implies that

∣∣∣∣∫ fdx−
∫
fdx

∣∣∣∣ ≤ (∫ b

a

fn + εndx

)
−
(∫ b

a

fn − εndx
)

= 2εn(b− a)

(If a ≤ b ≤ c ≤ d, then c− b ≤ d− a)

And taking the limit as n→∞, since εn → 0, we get∫
fdx =

∫
fdx

Hence f is Riemann integrable

STEP 4: Finally, using |fn − f | ≤ εn again, which implies −εn ≤
fn − f ≤ εn and integrating on both sides, we get

−εn(b− a) ≤
∫ b

a

fn − fdx ≤ εn(b− a)∣∣∣∣∫ b

a

fn −
∫ b

a

fdx

∣∣∣∣ ≤ εn(b− a)
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And taking the limit as n→∞, we get

lim
n→∞

∫ b

a

fndx =

∫ b

a

f(x)dx �

Non-Example: To show that we really need uniform convergence in
the above, consider

fn(x) = nx
(
1− x2

)n
Claim: fn → 0 pointwise on [0, 1]

This is true if x = 0 and x = 1

And if 0 < x < 1, this follows because exponential functions go faster
to 0 than power functions2 For example, if x = 1

2 , then

fn

(
1

2

)
=
n

2

(
3

4

)n
→ 0X

Now if the above result were true, then we would have
∫ 1

0 fn(x)dx→∫ 1

0 0dx = 0, but using the u−sub u = 1− x2, it follows that∫ 1

0

fn(x)dx =

∫ 1

0

nx
(
1− x2

)n
dx =

n

2n+ 2
→ 1

2
6= 0

6. Uniform Convergence and Differentiation

Finally, let’s discuss differentiability, which is much more delicate!

Example: Consider fn : [−1, 1]→ R defined by

fn(x) =

√
x2 +

1

n

2To make this rigorous, you would use that limn→∞
nα

(1+p)n = 0 for positive α and p
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Then each fn is differentiable, but fn converges uniformly to f(x) = |x|,
which is not differentiable!

So the uniform limit of differentiable functions need not be differen-
tiable. Even worse, it could converge to a nowhere differentiable
function!

That said, the result is true if you assume, moreover, that the sequence
of derivatives f ′n converges uniformly:

Theorem: (Differentiability)

(1) Suppose fn is differentiable on [a, b] and fn → f uniformly

(2) Moreover, suppose f ′n → g uniformly for some function g

(3) Then in fact f is differentiable and f ′ = g.

Note: (3) says in this case f ′n → f ′ uniformly and that

f ′(x) = lim
n→∞

f ′n(x)

So heuristically, fn → f ⇒ f ′n → f ′ but under extra precaution

Special case of Proof: IF each f ′n is continuous, then the proof is
much easier, because by the fundamental theorem of calculus, we then
have:

fn(x) = fn(a) +

∫ x

a

f ′n(t)dt→ f(a) +

∫ x

a

g(t)dt

And since fn(x)→ f(x), we get

f(x) = f(a) +

∫ x

a

g(t)dt
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And by the FTC again, we have f ′ = g and we would be done.
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