
LECTURE 10: FOURIER TRANSFORM

Today: We’ll discuss a continuous analog of Fourier series, called the
Fourier Transform

1. Definition and Properties

Motivation: If f is a function of period 1, then

f̂(n) =

∫ 1

0

f(x)e−2πinxdx

(The analog of 1
2π here is 1

1 = 1)

Questions: Is there a continuous analog of this, where n is replaced
by a real number? And what if f is not periodic?

Yes there is, and it’s called the Fourier Transform:

Definition:

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πiξxdx

Remarks:

(1) Sometimes this is written as F(f)

(2) f̂ is a function of ξ (frequency variable) and not of x (spatial
variable)
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(3) The improper integral is defined in the following sense∫ ∞
−∞

g(x)dx = lim
N→∞

∫ N

−N
g(x)dx

(4) An interesting special case is f̂(0) =
∫∞
−∞ f(x)dx

(5) f is not necessarily periodic here

Does this work for any function f? No, not even for f(x) = 1. We will
discuss the appropriate function space below.

Immediate Properties:

(1) (Translation) ̂f(x+ h) = f̂(ξ)e2πihξ

(2) (Translation) ̂f(x)e−2πixh = f̂(ξ + h)

(3) (Dilation) If δ > 0 then f̂(δx) = 1
δ f̂
(
ξ
δ

)
This means for example that if g(x) = f(x+ h) then ĝ(ξ) = f̂(ξ)e2πihξ

For example, if δ = 2 this says f̂(2x) = 1
2 f̂
(
ξ
2

)
, so the Fourier trans-

form turns compression into stretching, and vice-versa.

(The properties follow from the definition and/or u-subs)

2. The Schwartz Space

In order for the Fourier transform to be well-defined, we need f to go
to 0 very fast at ±∞
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Intuitively: We want all the derivatives f, f
′
, f

′′
etc. not only to be

bounded, but also go faster to 0 than any power function 1
x ,

1
x2 ,

1
x3 etc.

Definition: f ∈ S(R) (Schwartz Space) if f is infinitely differentiable
and for all k and n

sup
x∈R
|x|k

∣∣∣f (n)(x)
∣∣∣ <∞

(The sup could depend on k and n)

For example, with n = 0 this means that |f(x)| ≤ Ck
|x|k

for all x and all k

Example: e−x
2 ∈ S(R), but also functions that are 0 outside a

bounded interval

Notice that if f ∈ S then f ′ ∈ S and xf ∈ S, and (see below) f̂ ∈ S

Finally, note that this is just a sufficient condition, there are non-
Schwartz functions for which f̂ is defined

3. Derivatives and Fourier Transforms

The Fourier transform turns differentiation into multiplication, in the
following sense:

Fact: [Differentiation]

(1) f̂ ′(x) = (2πiξ)f̂(ξ)

(2) ̂−2πixf(x) = d
dξ f̂(ξ)
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In particular, it turns differential equations into algebra equations!
This is why they’re so useful in ODE and PDE.

Proof of (1): Integrating by parts with respect to x gives∫ N

−N
f ′(x)e−2πixξdx =

[
f(x)e−2πixξ

]N
−N + 2πiξ

∫ N

−N
f(x)e−2πixξdx

Letting N →∞ gives the result. The boundary terms are 0 because∣∣e−2πixξf(x)
∣∣ =

∣∣e−2πixξ∣∣ |f(x)| = |f(x)| → 0 as x→ ±∞, because f is Schwartz

Proof-Sketch of (2)1 Follows from writing

f̂(ξ + h)− f̂(ξ)

h
−
(
−̂2πixf(ξ)

)
=

∫ ∞
−∞

f(x)e−2πixξ
[
e−2πixh − 1

h
+ 2πix

]
And splitting up the integral into two regions, one where |x| is large
(where we can use that f(x) and xf(x) are Schwartz) and one where
|x| is small, where we can use that

lim
h→0

e−2πixh − 1

h
+ 2πix = −2πix+ 2πix = 0

Corollary: If f ∈ S then f̂ ∈ S

Why? First note that whenever g ∈ S then ĝ is bounded because

|ĝ(ξ)| =
∣∣∣∣∫ ∞
−∞

g(x)e2πixξdx

∣∣∣∣ ≤ ∫ ∞
−∞
|g(x)|

∣∣e2πixξ∣∣ dx =

∫ ∞
−∞
|g(x)| ≤ C

But then ξf̂(ξ) is bounded because it’s just the Fourier transform of
1
2πif

′(x) ∈ S and so is d
dξ f̂(ξ) because it’s the Fourier transform of

1See Stein and Shakarchi, Prop 1.2(v) in Chapter 5 for details
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−2πixf(x) ∈ S, and you can use this to show that ξk
∣∣∣∣(f̂)(n) (ξ)

∣∣∣∣ is

always bounded, so f̂ ∈ S �

4. Self-Adjointness

The Fourier transform has an interesting self-adjointness property:

Fact: If f, g ∈ S then∫ ∞
−∞

f̂(x)g(x)dx =

∫ ∞
−∞

f(y)ĝ(y)dy

Note: Compare this to 〈Tx, y〉 = 〈x, Ty〉 if T is self-adjoint

Proof: ∫ ∞
−∞

f̂(x)g(x)dx =

∫ ∞
−∞

(∫ ∞
−∞

f(y)e−2πixydy

)
g(x)dx

=

∫ ∞
−∞

∫ ∞
−∞

f(y)g(x)e−2πixydydx

FUB
=

∫ ∞
−∞

f(y)

(∫ ∞
−∞

g(x)e−2πixydx

)
dy

=

∫ ∞
−∞

f(y)ĝ(y)dy

(The use of Fubini is justified because f and g are Schwartz)

5. Convolution
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We can generalize the notion of convolution to functions on R:

Definition:

(f ? g)(x) =

∫ ∞
−∞

f(y)g(x− y)dy =

∫ ∞
−∞

f(x− y)g(y)dy

Again, f and g are not necessarily periodic. This definition is more
widely used in math than the previous one.

Facts:

(1) If f ∈ S and g ∈ S then f ? g ∈ S

(2) f ? g = g ? f

(3) f̂ ? g(ξ) = f̂(ξ)ĝ(ξ)

The proofs of (2) and (3) are identical to the one in the periodic case
(where you use Fubini)

6. The Fourier Inversion Formula

One of the cornerstone theorems in the theory of Fourier transforms is
the Fourier inversion formula, which says:

Theorem: [Fourier Inversion]

f(x) =

∫ ∞
−∞

f̂(ξ)e2πixξdξ

In other words, f is its own Fourier transform! (provided you use 2πi
instead of −2πi), so in some sense, the Fourier transform is a (sort of)
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bijection from S to S

Some preliminary Facts:

(1) If f(x) = e−πx
2

then f̂(ξ) = f(ξ)

(2) If Gδ(x) = e−πδx
2

then Ĝδ(ξ) = 1√
δ
e−

πx2

δ =: Kδ(ξ)

The first follows from using the definition and completing the square,
and the second one follows from the Dilation property

Proof-Sketch of Fourier Inversion:2

STEP 1: First assume x = 0 and show

f(0) =

∫ ∞
−∞

f̂(ξ)e2πi(0)ξdξ =

∫ ∞
−∞

f̂(ξ)dξ

Let Gδ = e−πδx
2

and Kδ as above, then by self-adjointedness, we have∫ ∞
−∞

f(x)Kδ(x)︸ ︷︷ ︸
Ĝδ

dx =

∫ ∞
−∞

f̂(ξ)Gδ(ξ)dξ

STEP 2: Left term: By symmetry, Kδ(x) = Kδ(−x) and so the
integral on the left can be written as∫ ∞

−∞
f(x)Kδ(−x)dx = (f ? Kδ)(0)

It can be shown that {Kδ} is a family of Good Kernels and so by a
result from the homework, it follows that (f ? Kδ) → f uniformly as
δ → 0, and in particular

2see Stein and Shakarchi, Theorem 1.9 in Chapter 5
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(f ? Kδ)(0)→ f(0)

So the left hand side indeed converges to f(0)

STEP 3: Right Term

Using Gδ = e−πδx
2

it follows that as δ → 0 we have∫ ∞
−∞

f̂(ξ)Gδ(ξ)dξ =

∫ ∞
−∞

f̂(ξ)e−πδξ
2

dξ →
∫ ∞
−∞

f̂(ξ)dξ

Combining the two we get

f(0) =

∫ ∞
−∞

f̂(ξ)e2πixξdξ

STEP 4: In the general case, if x is fixed, let F (y) = f(y + x) then
by the x = 0 result above and the translation property, we get

f(x) = F (0) =

∫ ∞
−∞

F̂ (ξ)dξ =

∫ ∞
−∞

f̂(ξ)e2πixξdξ �

7. Plancherel’s Formula

As a corollary, we obtain Plancherel’s Formula, which says that the
Fourier transform is an isometry:

Theorem: [Plancherel]

If f ∈ S then
∥∥∥f̂∥∥∥ = ‖f‖

Proof: Define f s(x) = f(−x) then can show that f̂ s(ξ) = f̂(ξ).
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Let h = f ?f s then by the Fourier inversion formula with x = 0 we get

h(0) =

∫ ∞
−∞

ĥ(ξ)dξ

h(0) = (f ? f s) (0) =

∫ ∞
−∞

f(x)f (s)(−x)dx =

∫ ∞
−∞

f(x)f(−(−x))dx

=

∫ ∞
−∞
|f(x)|2 dx

ĥ(ξ) = f̂(ξ)f̂ s(ξ) = f̂(ξ)f̂(ξ) =
∣∣∣f̂(ξ)

∣∣∣2
Combining the two, we get∫ ∞

−∞
|f(x)|2 dx =

∫ ∞
−∞

∣∣∣f̂(ξ)
∣∣∣2 dξ �
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