
LECTURE 11: SUBSEQUENCES (II)

1. Another Inductive Construction

Video: Inductive Construction 2

Let’s do another inductive construction, but with subsequences:

Example 4:

Suppose (sn) is a positive sequence with inf {sn | n ∈ N} = 0.
Show that (sn) has a decreasing subsequence (snk

) converg. to 0

Goal: Construct a subsequence (snk
) with snk+1

< snk
for all k and

0 < snk
<

1

k

STEP 1: Want sn1
< 1, but notice that 1 > 0 = inf {sn | n ∈ N}
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https://youtu.be/rQWqt_e8kvU
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So by definition of inf, there is some sn1
with sn1

< 1. ✓

STEP 2: Suppose we found sn1
> sn2

> · · · > snk
such that snj

< 1
j

for all j = 1, 2, . . . , k, and want to find snk+1
with snk+1

< snk
and

snk+1
< 1

k+1

Note: You can’t directly apply the argument above because it doesn’t
guarantee that snk+1

< snk
and you don’t even know whether nk+1 > nk.

To get around this, consider

m = min

{
1

k + 1
, s1, s2, . . . , snk

}
> 0 (not a typo)

Then m > 0 = inf {sn | n ∈ N}, so by definition of inf, there is snk+1

such that

snk+1
< m = min

{
1

k + 1
, s1, s2, . . . , snk

}
Therefore we get snk+1

< 1
k+1 , snk+1

< snk
and finally nk+1 > nk because

snk+1
is smaller than (hence different from) all the terms preceding it,
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so it cannot be equal to any of its previous terms ✓

STEP 3: Hence, by the inductive construction, we have found a sub-
sequence (snk

) such that snk+1
< snk

(decreasing) and 0 < snk
< 1

k for
all k. So, by the squeeze theorem, we get limk→∞ snk

= 0 □

2. Monotone Subsequence

Video: Monotone Subsequence

Here’s a miraculous fact about subsequences, with an elegant proof:

Theorem:

Every sequence (sn) has a monotonic subsequence

(Monotonic means either nondecreasing or nonincreasing)

Note: There absolutely no assumptions about (sn). It could be diver-
gent, it could be unbounded, it could be wild! That’s what makes this

https://youtu.be/RzRkW-DPsNY
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theorem so powerful!

Proof: Neat!

Definition:

We say the number sn is dominant if for all m > n, sm < sn

Kind of like decreasing, except here we’re fixing n. Think “Everything
is going downhill after sn” (kind of like the stock market crashing right
after you buy some stocks)

Case 1: Suppose there are infinitely many dominant terms, let’s de-
note them (in order) sn1

, sn2
, . . .



LECTURE 11: SUBSEQUENCES (II) 5

Claim: (snk
) = (sn1

, sn2
, . . . ) is decreasing

But if nk+1 > nk, then since snk
is dominant, we have snk+1

< snk
✓

Case 2: There are only finitely many dominant terms.

This is lit! We’ll fail so hard at constructing a decreasing sequence
that we’re actually constructing an increasing one ,
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Let n1 be larger than the largest dominant term. Since n1 is not dom-
inant, by definition there must be n2 > n1 such that sn2

≥ sn1
.

Since n2 is not dominant (we’re already passed the dominant terms),
there must be n3 > n2 such that sn3

≥ sn2
.

Inductively, since nk is not dominant, there must be nk+1 > nk such
that snk+1

≥ snk
.

Therefore we have inductively constructed a subsequence (snk
) with

snk+1
≥ snk

for all k, so this subsequence is nondecreasing ✓ □

3. The Bolzano-WeierstraßTheorem

Video: Bolzano-Weierstraß Theorem

We are now finally ready for the cornerstone of Analysis: The cel-
ebrated Bolzano-Weierstraß Theorem. It says that, even though se-
quences may not always converge, we have:

Bolzano-Weierstraß Theorem:

Every bounded sequence (sn) has a convergent subsequence (snk
)

https://youtu.be/PapmUYM0GRk
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So even if (sn) doesn’t converge, some part of it must converge.

Analogy: Suppose you are trapped in your room and are looking for a
pair of scissors. Even though you might never find the pair of scissors,
in your search you keep finding car keys you’re not looking for. In
other words, even though you may not converge to the scissors, part
of you (a subsequence) converges to the car keys.

Note: This is wrong if (sn) is unbounded. For example, no subse-
quence of sn = n converges.

Proof: Easy!

Let (sn) be a bounded sequence. Then, by the above, (sn) has a
monotonic subsequence (snk

).

Case 1: (snk
) is nondecreasing

Then (snk
) is nondecreasing and bounded above (since (sn) is bounded),

so by the Monotone Sequence Theorem (snk
) converges (see picture

above) ✓
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Case 2: (snk
) is nonincreasing

Then (snk
) is nonincreasing and bounded below, so it converges ✓ □

4. Limsup and Subsequences

Video: Limsup and Subsequences

More generally, we can say the following:

Theorem:

For any sequence (sn) there is a subsequence (snk
) that converges

to lim supn→∞ sn

In other words, there is always an express train leading to lim sup.
This makes lim sup somewhat more concrete; it isn’t this weird and
abstract concept any more, we actually reach it using subsequences.

Note: The proof is HARD and will be omitted, you can check it out
in the video if you’d like.

https://youtu.be/jhx57n3-8EI
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5. Limit Points

Video: Limit Points

Let’s move on with a more fun and useful topic: Limit Points (also
known as Subsequential Limits):

Definition:

Let (sn) be a sequence. Then s is called a limit point of (sn) if
there is a subsequence (snk

) which converges to s.

So s is a limit point if there is an express train going to s.

Note: We allow s to be ±∞. Also, the set of limit points will be
denoted by S.

Let’s check out some examples of limit points:

https://youtu.be/P5gcCUusegE
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Example 1:

sn = (−1)n

Here the limit points are 1 (a subsequence is (1, 1, 1, 1, 1, . . . )) and −1

(a subsequence is (−1,−1,−1,−1, . . . )). Hence S = {−1, 1}

Example 2:

sn =

{
0 if n odd

n if n even



LECTURE 11: SUBSEQUENCES (II) 11

Here 0 is in S (Subsequence: (0, 0, 0, . . . )) but also ∞ is in S (Subse-

quence: (2, 4, 6, 8, . . . )), so S = {0,∞} .

S can be even crazier than that!

Example 3:

Let (rn) be the following enumeration of rational numbers

Then we can get arbitrarily close to every real number. Moreover,
∞ is a limit point (using the subsequence (1, 2, 3, . . . )) and so is −∞
(using the subsequence (−1,−2,−3, . . . )), therefore

S = R ∪ {∞,−∞} = R⋆

Where R⋆ is the extended real numbers (that is R with ±∞)
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6. Limit Point Facts

Let (sn) be a sequence and S be the set of its limit points.

Fact 1: S ̸= ∅

Why? From the (omitted) proof above, we know that there is a sub-
sequence (snk

) of (sn) that converges to lim supn→∞ sn.

Therefore lim supn→∞ sn ∈ S and so S ̸= ∅ (it literally contains the
number lim sup sn)

Fact 2: sup(S) = lim supn→∞ sn

So limsup is the biggest possible limit point of S. Similar for lim inf

Why? Let s ∈ S be arbitrary. By definition of S, there is a subse-
quence (snk

) such that limk→∞ snk
= s.
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But now, for each N , consider the sets {sn | n > N} and {snk
| k > N}.

The first set has more elements than the second one, since there are
more regular stops than express stops.

Therefore, we must have:

sup {sn | n > N} ≥ sup {snk
| k > N}

Hence, taking the limit as N → ∞, we get:

lim sup
n→∞

sn
DEF
= lim

N→∞
sup {sn | n > N}

≥ lim
N→∞

sup {snk
| k > N}

= lim sup
k→∞

snk

=s (Since snk
converges to s)

Therefore for all s ∈ S, s ≤ lim supn→∞ sn, and since s was arbitrary,
we get sup(S) ≤ lim supn→∞ sn.
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On the other hand, by Fact 1 above, we know lim supn→∞ sn ∈ S,
and therefore, since for all s ∈ S, sup(S) ≥ s, we get sup(S) ≥
lim supn→∞ sn.

Therefore sup(S) = lim supn→∞ sn ✓

Fact 3: lim
n→∞

sn = s ⇔ S = {s}

Why? (⇒) Suppose sn → s, then by Fact 2 above, we have:

sup(S) = lim sup
n→∞

sn = s = lim inf
n→∞

sn = inf(S)

Hence sup(S) = inf(S) = s (the biggest and smallest value of S is s)
and so S = {s} ✓

(⇐) Suppose S = {s}, but then

lim sup
n→∞

sn = sup(S) = s = inf(S) = lim inf
n→∞

sn

Therefore lim supn→∞ sn = lim infn→∞ sn = s, so by the lim sup squeeze
theorem, we get that (sn) converges to s ✓ □
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