LECTURE 11: MIDTERM 1 - REVIEW

Welcome to the Midterm 1 review session, and let's start with some fun with planes!

1. Plane Boring?

Example 1:
Find the equation of the plane containing the folowing points:

$$
A=(-1,2,1), B=(0,-3,2), C=(1,1,-4)
$$

STEP 1: Picture

STEP 2: Vectors

Date: Wednesday, September 22, 2021.

$$
\begin{aligned}
& \mathbf{a}=\overrightarrow{A B}=\langle 0-(-1),-3-2,2-1\rangle=\langle 1,-5,1\rangle \\
& \mathbf{b}=\overrightarrow{A C}=\langle 1-(-1), 1-2,-4-1\rangle=\langle 2,-1,-5\rangle
\end{aligned}
$$

STEP 3: Normal Vector

$$
\begin{aligned}
\mathbf{n} & =\mathbf{a} \times \mathbf{b} \\
& =\left|\begin{array}{ccc}
i & j & k \\
1 & -5 & 1 \\
2 & -1 & -5
\end{array}\right| \\
& =\left|\begin{array}{cc}
-5 & 1 \\
-1 & -5
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 1 \\
2 & -5
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & -5 \\
2 & -1
\end{array}\right| \mathbf{k} \\
& =\langle 25+1,-(-5-2),-1+10\rangle \\
& =\langle 26,7,9\rangle
\end{aligned}
$$

STEP 4: Point: $A=(-1,2,1)$

STEP 5: Equation

$$
26(x+1)+7(y-2)+9(z-1)=0
$$

2. Tangent to the Course

Example 2:

Find the parametric equation of the tangent line to the following curve at the point $(5,7,20)$

$$
r(t)=\left\langle t^{2}+1, t^{3}-1, t^{4}+t^{2}\right\rangle
$$

STEP 1: Find t

$$
\left\langle t^{2}+1, t^{3}-1, t^{4}+t^{2}\right\rangle=\langle 5,7,20\rangle
$$

Look at the first equation (easiest)

$$
t^{2}+1=5 \Rightarrow t^{2}=4 \Rightarrow t= \pm 2
$$

Check: $t=2$

$$
\begin{aligned}
t^{3}-1 & =2^{3}-1=7 \\
t^{4}+t^{2} & =2^{4}+2^{2}=20
\end{aligned}
$$

Hence $t=2$ works
Check: $t=-2$
But then $t^{3}-1=(-2)^{3}-1=-9 \neq 7$, so $t=-2$ doesn't work.
Therefore we only have $t=2$.
STEP 2: Direction Vector:

$$
\begin{aligned}
r^{\prime}(t) & =\left\langle 2 t, 3 t^{2}, 4 t^{3}+2 t\right\rangle \\
r^{\prime}(2) & =\left\langle 2(2), 3(2)^{2}, 4(2)^{3}+2(2)\right\rangle=\langle 4,12,36\rangle
\end{aligned}
$$

STEP 3: Point: (5, 7, 20)

STEP 4: Equation:

$$
\left\{\begin{array}{l}
x(t)=5+4 t \\
y(t)=7+12 t \\
z(t)=20+36 t
\end{array}\right.
$$

3. Acceleration and all that

Example 3:

Find the position $\mathbf{r}(t)$ of a particle, given that its acceleration is $\langle 2,3,2\rangle$ and its velocity at $t=1$ is $\langle 4,0,-2\rangle$ and its initial position is $\langle 1,2,3\rangle$

STEP 1: Find $v(t)$

$$
\begin{aligned}
a(t) & =\langle 2,3,2\rangle \\
& \Rightarrow v(t)=\int a(t) d t \\
& =\left\langle\int 2, \int 3, \int 2\right\rangle \\
& =\langle 2 t+A, 3 t+B, 2 t+C\rangle
\end{aligned}
$$

$v(1)=\langle 2(1)+A, 3(1)+B, 2(1)+C\rangle=\langle 2+A, 3+B, 2+C\rangle=\langle 4,0,-2\rangle$
Therefore

$$
\left\{\begin{array}{l}
2+A=4 \Rightarrow A=2 \\
3+B=0 \Rightarrow B=-3 \\
2+C=-2 \Rightarrow C=-4
\end{array}\right.
$$

Hence $v(t)=\langle 2 t+2,3 t-3,2 t-4\rangle$
STEP 2: Find $\mathbf{r}(t)$

$$
\begin{aligned}
\mathbf{r}(t)= & \int v(t) d t \\
= & \left\langle\int 2 t+2, \int 3 t-3, \int 2 t-4\right\rangle \\
= & \left\langle t^{2}+2 t+D, \frac{3}{2} t^{2}-3 t+E, t^{2}-4 t+F\right\rangle \\
& \mathbf{r}(0)=\langle D, E, F\rangle=\langle 1,2,3\rangle
\end{aligned}
$$

Hence $D=1, E=2, F=3$ and therefore

$$
\mathbf{r}(t)=\left\langle t^{2}+2 t+1, \frac{3}{2} t^{2}-3 t+2, t^{2}-4 t+3\right\rangle
$$

4. This lecture is so long

Let's do a fun problem with arclength!

Example 4:

Find the length of the following curve from $t=0$ to $t=\frac{\pi}{4}$

$$
\mathbf{r}(t)=\langle\cos (t), \sin (t), \ln (\cos (t))\rangle
$$

tength

$$
\text { Length }=\int_{0}^{\frac{\pi}{4}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t
$$

$$
=\int_{0}^{\frac{\pi}{4}} \sqrt{(-\sin (t))^{2}+(\cos (t))^{2}+\left(\frac{-\sin (t)^{2}}{\cos (t)}\right)} d t
$$

$$
=\int_{0}^{\frac{\pi}{4}} \sqrt{\sin ^{2}(t)+\cos ^{2}(t)+\frac{\sin ^{2}(t)}{\cos ^{2}(t)}} d t
$$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{4}} \sqrt{1+\tan ^{2}(t)} d t \\
& =\int_{0}^{\frac{\pi}{4}} \sqrt{\sec ^{2}(t)} d t \\
& =\int_{0}^{\frac{\pi}{4}} \sec (t) d t \\
& =[\ln |\tan (t)+\sec (t)|]_{0}^{\frac{\pi}{4}} \\
& =\ln \left|\sec \left(\frac{\pi}{4}\right)+\tan \left(\frac{\pi}{4}\right)\right|-\ln |\tan (0)+\sec (0)| \\
& =\ln |\sqrt{2}+1|-\ln |0+1| \\
& =\ln (\sqrt{2}+1)
\end{aligned}
$$

5. Scratching the Surface

Example 5:

Name the following surfaces
(a) $\frac{x^{2}}{4}+\frac{y^{2}}{16}-\frac{z^{2}}{9}=1$
(b) $z=2 x^{2}-3 y^{2}$
(c) $x=4 y^{2}+3 z^{2}$
(d) $x^{2}+y^{2}-z^{2}=-2$
(e) $z^{2}-x^{2}-y^{2}=0$
(a) Looks like $x^{2}+y^{2}-z^{2}=1$. Since it has one minus, it's a hyperboloid of one sheet/dress
(b) Since it's of the form $z=$ something, and there is a minus, it's a hyperbolic paraboloid/saddle
(c) It's similar to $z=x^{2}+y^{2}$ but with x, so it's an (elliptic) paraboloid
(d) Notice this is equivalent to $-x^{2}-y^{2}+z^{2}=2$. Since there are two minuses (and the 2 is positive), it's a hyperboloid of two sheets/two cups
(e) It's the same as $z^{2}=x^{2}+y^{2}$, so it's a cone

Example 6:

Find the name, center, and direction of the following surface and sketch a rough picture

$$
x^{2}-y^{2}+z^{2}=4 x+2 z-5
$$

The trick is to complete the square:

$$
\begin{aligned}
x^{2}-4 x-y^{2}+z^{2}-2 z+5 & =0 \\
(x-2)^{2}-4-y^{2}+(z-1)^{2}-1+5 & =0 \\
(x-2)^{2}-y^{2}+(z-1)^{2} & =0 \\
y^{2} & =(x-2)^{2}+(z-1)^{2}
\end{aligned}
$$

This looks similar to $z^{2}=x^{2}+y^{2}$, and in fact it's a cone in the y-direction, centered at $(2,0,1)$

6. Parallel, Skew, or Intersecting

Example 7:

Are the following lines parallel, intersecting, or skew?

$$
L_{1}:\left\{\begin{array}{l}
x(t)=t+1 \\
y(t)=t+2 \\
z(t)=t+3
\end{array} \quad L_{2}:\left\{\begin{array}{l}
x(s)=2 s \\
y(s)=s+1 \\
z(s)=2 s+1
\end{array}\right.\right.
$$

The direction vector of L_{1} is $\langle 1,1,1\rangle$ and the direction vector of L_{2} is $\langle 2,1,2\rangle$ which are not parallel, so the lines either intersect or are skew.

To figure this out, we need to solve all 3 equations.

$$
\left\{\begin{aligned}
t+1 & =2 s \\
t+2 & =s+1 \\
t+3 & =2 s+1
\end{aligned}\right.
$$

The first equation tells us $t=2 s-1$
Then second equation becomes:

$$
\begin{aligned}
t+2 & =s+1 \\
2 s-1+2 & =s+1 \\
2 s+1 & =s+1 \\
s & =0
\end{aligned}
$$

And therefore $t=2 s-1=2(0)-1=-1$
But then the third equation becomes:

$$
t+3=2 s+1 \Rightarrow(-1)+3=2(0)+1 \Rightarrow 2=1
$$

Which is a contradiction, and therefore the equation has no solution, and hence the lines are skew.

