LECTURE 11: MULTIVARIABLE ANALYSIS

Welcome to the heart of the course, where we generalize single-variable concepts like derivatives to multivariable calculus.

1. Preliminaries

Notation: $x = (x_1, x_2, \ldots, x_n)$ is a point in \mathbb{R}^n

The **length** of x is denoted by

$$|x| = \sqrt{(x_1)^2 + \dots + (x_n)^2}$$

We will frequently deal with linear mappings between spaces:

Definition: $A : \mathbb{R}^n \to \mathbb{R}^m$ is a **linear transformation** if:

- (1) For all x and y, A(x+y) = Ax + Ay
- (2) For al x and all scalars c, A(cx) = cAx

The set of linear transformations from \mathbb{R}^n to \mathbb{R}^m is denoted as $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$

Mnemonic: n = INput, m = Mouthput, it goes from \mathbb{R}^n to \mathbb{R}^m

Date: Wednesday, July 20, 2022.

2. Norm of A

Given a linear transformation A, we can define ||A||, the norm of A, which like a "maximum spread" of A:

Definition: If $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ then

$$||A|| = \sup_{x \in \mathbb{R}^n} \frac{|Ax|}{|x|}$$

Note: By definition of sup we have $||A|| \ge \frac{|Ax|}{|x|}$ for all x and hence

 $|Ax| \le ||A|| \, |x|$

This is the form we'll most frequently use.

Intuitively: Think of ||A|| as the largest possible spread of A. For example, if ||A|| = 2 then we have $|Ax| \le 2|x|$ for all x, so |Ax| is never more than twice as big as |x|.

 $||A|| = \infty$ concretely means there is a sequence x_k of points such that

$$\lim_{k \to \infty} \frac{|Ax_k|}{|x_k|} = \infty$$

So the stretch $\frac{|Ax|}{|x|}$ gets uncontrollably big.

Note: In the definition of ||A||, it's actually enough to assume $|x| \le 1$ or even just |x| = 1 because

$$\frac{|A(cx)|}{|cx|} = \frac{|cAx|}{|c||x|} = \frac{|c||Ax|}{|c||x|} = \frac{|Ax|}{|x|}$$

So if the property holds for x it holds for any multiple cx.

3. Properties of ||A||

Let's now prove some properties of ||A||.

First of all, could $||A|| = \infty$? Not in finite dimensions!

Fact: If $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ then $||A|| < \infty$ (that is A is **bounded**)

Proof: Finite-dimensionality is crucial here!

Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{R}^n and let $x \in \mathbb{R}^n$ be given. Then there are c_1, \ldots, c_n such that

$$x = c_1 e_1 + \dots + c_n e_n$$

Then
$$|Ax| = \left| A\left(\sum_{i=1}^{n} c_i e_i\right) \right| \stackrel{\text{LIN}}{=} \left| \sum_{i=1}^{n} c_i \left(Ae_i\right) \right| \leq \sum_{i=1}^{n} |c_i| |Ae_i|$$

However, for each i, we have

$$|c_i| = \sqrt{(c_i)^2} \le \sqrt{(c_1)^2 + \dots + (c_n)^2} = |x|$$

Hence
$$|Ax| \le \sum_{i=1}^{n} \underbrace{|c_i|}_{\le |x|} |Ae_i| \le \left(\sum_{i=1}^{n} |Ae_i|\right) |x| = C |x|$$

Where $C =: \sum_{i=1}^{n} |Ae_i|$ (doesn't depend on x).

From this it follows that for all $x, \frac{|Ax|}{|x|} \leq C < \infty$

One of the most surprising facts about linear transformations is that A bounded implies A is continuous!

Fact: If $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ then A is uniformly continuous

Proof: Let $\epsilon > 0$ be given, let $\delta = \frac{\epsilon}{\|A\|}$ then if $|x - y| < \delta$ then

$$|Ax - Ay| = |A(x - y)| \le ||A|| ||x - y|| < ||A|| \left(\frac{\epsilon}{||A||}\right) = \epsilon \checkmark \Box$$

Next we want to show that ||A|| behaves nicely with respect to sums and compositions

Facts:

(1)
$$||A + B|| \le ||A|| + ||B||$$

(2) $||AB|| \le ||A|| ||B||$

Here AB is the composition of A and B whenever it's defined

Why? (1) follows because for all x

 $|(A + B)x| = |Ax + Bx| \le |Ax| + |Bx| \le ||A|| ||x|| + ||B|| ||x|| = (||A|| + ||B||) ||x||$ And (2) follows similarly because for all x

$$|(AB)x| = |A(Bx)| \le ||A|| \, ||Bx|| \le ||A|| \, ||B|| \, ||x||$$

Fun fact: If you define d(A, B) = ||A - B||, then $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ actually becomes a metric space! So all the concepts of open sets and continuity makes sense for linear transformations as well. We'll discuss this below.

4

Relation to matrices: If A is a linear transformation with matrix

$$[A] = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & a_{ij} & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

Then by calculating |Ax| and using Cauchy-Schwarz, you can actually show that (see section 9.9 of Rudin for details)

$$||A|| \le \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij})^2}$$

There are examples where we get a strict inequality. For example, if

$$A(x_1, x_2) = (x_1, 2x_2)$$

Then can show ||A|| = 2 but

$$[A] = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

And so the square root of the sum of squares of components is $\sqrt{5}$

4. A^{-1}

Later in this chapter, we will talk a lot about inverse transformations. In order to do this, let's study the inverse transformation A^{-1} a bit more carefully.

Notation: $\mathcal{L}(\mathbb{R}^n) = \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ (space of linear operators on \mathbb{R}^n)

Recall: $A \in \mathcal{L}(\mathbb{R}^n)$ is **invertible** if there is $A^{-1} \in \mathcal{L}(\mathbb{R}^n)$ such that $AA^{-1} = A^{-1}A = I$ (the identity transformation)

Notation: Ω = set of invertible linear transformations on \mathbb{R}^n

Goal: Show Ω is open and moreover the mapping $A \to A^{-1}$ is continuous (with respect to the metric d(A, B) = ||B - A||)

Lemma: If $A \in \Omega$ and $B \in \mathcal{L}(\mathbb{R}^n)$ is such that

$$\|B - A\| \|A^{-1}\| < 1$$

Then $B \in \Omega$

So if B is close enough to A, then B is invertible as well. This makes sense if Ω were open, and in fact helps us to show open-ness (see below)

Proof:

STEP 1: Let
$$\alpha = \frac{1}{\|A^{-1}\|}$$
 and $\beta = \|B - A\|$
Then $\beta = \|B - A\| < \frac{1}{\|A^{-1}\|} = \alpha \Rightarrow \beta < \alpha$

Then for every $x \in \mathbb{R}^n$, consider:

$$\alpha |x| = \alpha \left| A^{-1}Ax \right| \le \alpha \underbrace{\left\| A^{-1} \right\|}_{\frac{1}{\alpha}} |Ax| = |Ax|$$
$$= \left| (A - B)x + Bx \right|$$
$$\le \left| (A - B)x \right| + \left| Bx \right|$$
$$\le \left\| A - B \right\| |x| + \left| Bx \right|$$
$$= \beta |x| + \left| Bx \right|$$

Therefore we obtain

$$(\alpha - \beta) |x| \le |Bx|$$

STEP 2: Claim: *B* is one-to-one

If Bx = 0 then since $\alpha > \beta$ we get

$$\underbrace{(\alpha - \beta)}_{>0} |x| \le |Bx| = |0| = 0$$

Which in turn implies |x| = 0 and so $x = 0 \checkmark$

Since $B : \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one, it follows that B is also onto and hence B is invertible, that is $B \in \Omega$

Corollary: Ω is open

Suppose $A \in \Omega$ and let $r = \frac{1}{\|A^{-1}\|} > 0$ then the previous result shows that if d(B, A) < r then $B \in \Omega$, so Ω is open.

Fact: The mapping $A \to A^{-1}$ is continuous

STEP 1: We need to study $B^{-1} - A^{-1}$ for B "close" to A

Claim # 1:

$$B^{-1} - A^{-1} = B^{-1}(A - B)A^{-1}$$

Why?

$$B^{-1}(A-B)A^{-1} = B^{-1}(AA^{-1} - BA^{-1}) = B^{-1}(I - BA^{-1}) = B^{-1} - B^{-1}BA^{-1}$$
$$= B^{-1} - A^{-1}\checkmark$$

From the claim, it follows that

$$\left\|B^{-1} - A^{-1}\right\| \le \left\|B^{-1}\right\| \underbrace{\|A - B\|}_{\beta} \underbrace{\|A^{-1}\|}_{\frac{1}{\alpha}} = \left\|B^{-1}\right\| \left(\frac{\beta}{\alpha}\right)$$

So all is left is to study $||B^{-1}||$

STEP 2:

Claim # 2:

$$\left\|B^{-1}\right\| \le \frac{1}{\alpha - \beta}$$

Why? In the Lemma, we showed that for all x, we have

 $(\alpha - \beta) |x| \le |Bx|$

Replacing x with $B^{-1}x$ in the above, we get

$$(\alpha - \beta) \left| B^{-1}x \right| \le \left| BB^{-1}x \right| \Rightarrow (\alpha - \beta) \left| B^{-1}x \right| < |x|$$

And therefore $\frac{|B^{-1}x|}{|x|} < \frac{1}{\alpha - \beta}$ and hence $\left\| B^{-1} \right\| \le \frac{1}{\alpha - \beta}$

STEP 3: Combining steps 1 and 2 we get

$$\left\|B^{-1} - A^{-1}\right\| \le \left\|B^{-1}\right\| \left(\frac{\beta}{\alpha}\right) \le \frac{\beta}{(\alpha - \beta)\alpha}$$

Let $\epsilon > 0$ be given, then since

$$\lim_{\beta \to 0} \frac{\beta}{(\alpha - \beta)\alpha} = 0$$

There is $\delta > 0$ such that if $|\beta| < \delta$ then $\left|\frac{\beta}{(\alpha - \beta)\alpha}\right| < \epsilon$.

With that δ , if $\underbrace{\|A - B\|}_{\beta} < \delta$ then by the above, $\|B^{-1} - A^{-1}\| < \epsilon$. \Box

5. The Derivative in \mathbb{R}^n

With those preliminaries out of our way, we can finally embark on our exploration of derivatives in \mathbb{R}^n .

Goal: If $f : \mathbb{R}^n \to \mathbb{R}^m$, how to define the derivative f'(x)?

First guess: By analogy with the scalar case, if $x \in \mathbb{R}^n$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

But here h is a vector, so it makes no sense to divide by h

So we need a definition of derivatives that doesn't have division in it.

What saves us is the concept of linear approximation from calculus:

Analogy: (n = 1) Note that if h is small, then

$$f(x+h) = f(x) + f'(x)h +$$
 Smaller terms

(This was used to approximate quantities like $\sqrt{4.02}$ or $\ln(0.97)$)

This is the point of view that we'll take:

Important definition: Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ and $x \in \mathbb{R}^n$.

If there is a linear transformation $A: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$f(x+h) = f(x) + Ah + r(h)$$

Where
$$\lim_{h \to 0} \frac{|r(h)|}{|h|} = 0$$

Then we say f is **differentiable at** x and f'(x) = A

Definition: f is differentiable if f is differentiable at all x

In other words, if you can expand f(x+h) out with a small remainder, then the linear part is the derivative of f.

Before, f'(x) was just a number, but now it's something more dynamic, it's a linear transformation. Intuitively, if f distorts space, then f'(x) describes the linear part of the distortion.

Note: More commonly, people write o(h) instead of r(h), it's a term smaller than h