
LECTURE 11: MULTIVARIABLE ANALYSIS

Welcome to the heart of the course, where we generalize single-variable
concepts like derivatives to multivariable calculus.

1. Preliminaries

Notation: x = (x1, x2, . . . , xn) is a point in Rn

The length of x is denoted by

|x| =
√

(x1)
2 + · · ·+ (xn)

2

We will frequently deal with linear mappings between spaces:

Definition: A : Rn → Rm is a linear transformation if:

(1) For all x and y, A(x+ y) = Ax+ Ay

(2) For al x and all scalars c, A(cx) = cAx

The set of linear transformations from Rn to Rm is denoted as L(Rn,Rm)

Mnemonic: n = INput, m = Mouthput, it goes from Rn to Rm

Date: Wednesday, July 20, 2022.
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2. Norm of A

Given a linear transformation A, we can define ‖A‖, the norm of A,
which like a “maximum spread” of A:

Definition: If A ∈ L(Rn,Rm) then

‖A‖ = sup
x∈Rn

|Ax|
|x|

Note: By definition of sup we have ‖A‖ ≥ |Ax|
|x| for all x and hence

|Ax| ≤ ‖A‖ |x|
This is the form we’ll most frequently use.

Intuitively: Think of ‖A‖ as the largest possible spread of A. For
example, if ‖A‖ = 2 then we have |Ax| ≤ 2 |x| for all x, so |Ax| is
never more than twice as big as |x|.

‖A‖ =∞ concretely means there is a sequence xk of points such that

lim
k→∞

|Axk|
|xk|

=∞

So the stretch |Ax|
|x| gets uncontrollably big.

Note: In the definition of ‖A‖, it’s actually enough to assume |x| ≤ 1
or even just |x| = 1 because

|A(cx)|
|cx|

=
|cAx|
|c| |x|

=
|c| |Ax|
|c| |x|

=
|Ax|
|x|

So if the property holds for x it holds for any multiple cx.
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3. Properties of ‖A‖
Let’s now prove some properties of ‖A‖.

First of all, could ‖A‖ =∞? Not in finite dimensions!

Fact: If A ∈ L(Rn,Rm) then ‖A‖ <∞ (that is A is bounded)

Proof: Finite-dimensionality is crucial here!

Let {e1, . . . , en} be the standard basis of Rn and let x ∈ Rn be given.
Then there are c1, . . . , cn such that

x = c1e1 + · · ·+ cnen

Then |Ax| =

∣∣∣∣∣A
(

n∑
i=1

ciei

)∣∣∣∣∣ LIN
=

∣∣∣∣∣
n∑
i=1

ci (Aei)

∣∣∣∣∣ ≤
n∑
i=1

|ci| |Aei|

However, for each i, we have

|ci| =
√

(ci)
2 ≤

√
(c1)

2 + · · ·+ (cn)
2 = |x|

Hence |Ax| ≤
n∑
i=1

|ci|︸︷︷︸
≤|x|

|Aei| ≤

(
n∑
i=1

|Aei|

)
|x| = C |x|

Where C =:
∑n

i=1 |Aei| (doesn’t depend on x).

From this it follows that for all x, |Ax||x| ≤ C <∞ �
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One of the most surprising facts about linear transformations is that
A bounded implies A is continuous!

Fact: If A ∈ L(Rn,Rm) then A is uniformly continuous

Proof: Let ε > 0 be given, let δ = ε
‖A‖ then if |x− y| < δ then

|Ax− Ay| = |A(x− y)| ≤ ‖A‖ |x− y| < ‖A‖
(

ε

‖A‖

)
= εX �

Next we want to show that ‖A‖ behaves nicely with respect to sums
and compositions

Facts:

(1) ‖A+B‖ ≤ ‖A‖+ ‖B‖

(2) ‖AB‖ ≤ ‖A‖ ‖B‖

Here AB is the composition of A and B whenever it’s defined

Why? (1) follows because for all x

|(A+B)x| = |Ax+Bx| ≤ |Ax|+|Bx| ≤ ‖A‖ |x|+‖B‖ |x| = (‖A‖+ ‖B‖) |x|

And (2) follows similarly because for all x

|(AB)x| = |A(Bx)| ≤ ‖A‖ |Bx| ≤ ‖A‖ ‖B‖ |x|

Fun fact: If you define d(A,B) = ‖A−B‖, then L(Rn,Rm) actually
becomes a metric space! So all the concepts of open sets and continuity
makes sense for linear transformations as well. We’ll discuss this below.
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Relation to matrices: If A is a linear transformation with matrix

[A] =

a11 · · · a1n
... aij

...
am1 · · · amn


Then by calculating |Ax| and using Cauchy-Schwarz, you can actually
show that (see section 9.9 of Rudin for details)

‖A‖ ≤

√√√√ m∑
i=1

n∑
j=1

(aij)
2

There are examples where we get a strict inequality. For example, if

A(x1, x2) = (x1, 2x2)

Then can show ‖A‖ = 2 but

[A] =

[
1 0
0 2

]
And so the square root of the sum of squares of components is

√
5

4. A−1

Later in this chapter, we will talk a lot about inverse transformations.
In order to do this, let’s study the inverse transformation A−1 a bit
more carefully.

Notation: L(Rn) = L(Rn,Rn) (space of linear operators on Rn)

Recall: A ∈ L(Rn) is invertible if there is A−1 ∈ L(Rn) such that
AA−1 = A−1A = I (the identity transformation)
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Notation: Ω = set of invertible linear transformations on Rn

Goal: Show Ω is open and moreover the mapping A→ A−1 is contin-
uous (with respect to the metric d(A,B) = ‖B − A‖)

Lemma: If A ∈ Ω and B ∈ L(Rn) is such that

‖B − A‖
∥∥A−1∥∥ < 1

Then B ∈ Ω

So if B is close enough to A, then B is invertible as well. This makes
sense if Ω were open, and in fact helps us to show open-ness (see below)

Proof:

STEP 1: Let α = 1
‖A−1‖ and β = ‖B − A‖

Then β = ‖B − A‖ < 1

‖A−1‖
= α⇒ β < α

Then for every x ∈ Rn, consider:

α |x| =α
∣∣A−1Ax∣∣ ≤ α

∥∥A−1∥∥︸ ︷︷ ︸
1
α

|Ax| = |Ax|

= |(A−B)x+Bx|
≤ |(A−B)x|+ |Bx|
≤ ‖A−B‖ |x|+ |Bx|
=β |x|+ |Bx|

Therefore we obtain

(α− β) |x| ≤ |Bx|
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STEP 2: Claim: B is one-to-one

If Bx = 0 then since α > β we get

(α− β)︸ ︷︷ ︸
>0

|x| ≤ |Bx| = |0| = 0

Which in turn implies |x| = 0 and so x = 0 X

Since B : Rn → Rn is one-to-one, it follows that B is also onto and
hence B is invertible, that is B ∈ Ω �

Corollary: Ω is open

Suppose A ∈ Ω and let r = 1
‖A−1‖ > 0 then the previous result shows

that if d(B,A) < r then B ∈ Ω, so Ω is open. �

Fact: The mapping A→ A−1 is continuous

STEP 1: We need to study B−1 − A−1 for B “close” to A

Claim # 1:
B−1 − A−1 = B−1(A−B)A−1

Why?

B−1(A−B)A−1 =B−1
(
AA−1 −BA−1

)
= B−1

(
I −BA−1

)
= B−1 −B−1BA−1

=B−1 − A−1X

From the claim, it follows that∥∥B−1 − A−1∥∥ ≤ ∥∥B−1∥∥ ‖A−B‖︸ ︷︷ ︸
β

∥∥A−1∥∥︸ ︷︷ ︸
1
α

=
∥∥B−1∥∥(β

α

)
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So all is left is to study
∥∥B−1∥∥

STEP 2:

Claim # 2: ∥∥B−1∥∥ ≤ 1

α− β
Why? In the Lemma, we showed that for all x, we have

(α− β) |x| ≤ |Bx|
Replacing x with B−1x in the above, we get

(α− β)
∣∣B−1x∣∣ ≤ ∣∣BB−1x∣∣⇒ (α− β)

∣∣B−1x∣∣ < |x|
And therefore

|B−1x|
|x| < 1

α−β and hence
∥∥B−1∥∥ ≤ 1

α−β

STEP 3: Combining steps 1 and 2 we get∥∥B−1 − A−1∥∥ ≤ ∥∥B−1∥∥(β
α

)
≤ β

(α− β)α

Let ε > 0 be given, then since

lim
β→0

β

(α− β)α
= 0

There is δ > 0 such that if |β| < δ then
∣∣∣ β
(α−β)α

∣∣∣ < ε.

With that δ, if ‖A−B‖︸ ︷︷ ︸
β

< δ then by the above,
∥∥B−1 − A−1∥∥ < ε. �
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5. The Derivative in Rn

With those preliminaries out of our way, we can finally embark on our
exploration of derivatives in Rn.

Goal: If f : Rn → Rm, how to define the derivative f ′(x)?

First guess: By analogy with the scalar case, if x ∈ Rn

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

But here h is a vector, so it makes no sense to divide by h

So we need a definition of derivatives that doesn’t have division in it.

What saves us is the concept of linear approximation from calculus:

Analogy: (n = 1) Note that if h is small, then

f(x+ h) = f(x) + f ′(x)h+ Smaller terms

(This was used to approximate quantities like
√

4.02 or ln(0.97))

This is the point of view that we’ll take:

Important definition: Suppose f : Rn → Rm and x ∈ Rn.

If there is a linear transformation A : Rn → Rm such that

f(x+ h) = f(x) + Ah+ r(h)
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Where lim
h→0

|r(h)|
|h|

= 0

Then we say f is differentiable at x and f ′(x) = A

Definition: f is differentiable if f is differentiable at all x

In other words, if you can expand f(x+h) out with a small remainder,
then the linear part is the derivative of f .

Before, f ′(x) was just a number, but now it’s something more dynamic,
it’s a linear transformation. Intuitively, if f distorts space, then f ′(x)
describes the linear part of the distortion.

Note: More commonly, people write o(h) instead of r(h), it’s a term
smaller than h
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