LECTURE 11: MULTIVARIABLE ANALYSIS

Welcome to the heart of the course, where we generalize single-variable concepts like derivatives to multivariable calculus.

1. Preliminaries

Notation: $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a point in \mathbb{R}^{n}
The length of x is denoted by

$$
|x|=\sqrt{\left(x_{1}\right)^{2}+\cdots+\left(x_{n}\right)^{2}}
$$

We will frequently deal with linear mappings between spaces:
Definition: $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation if:
(1) For all x and $y, A(x+y)=A x+A y$
(2) For al x and all scalars $c, A(c x)=c A x$

The set of linear transformations from \mathbb{R}^{n} to \mathbb{R}^{m} is denoted as $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$
Mnemonic: $n=$ INput, $m=$ Mouthput, it goes from \mathbb{R}^{n} to \mathbb{R}^{m}

2. Norm of A

Given a linear transformation A, we can define $\|A\|$, the norm of A, which like a "maximum spread" of A :

Definition: If $A \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ then

$$
\|A\|=\sup _{x \in \mathbb{R}^{n}} \frac{|A x|}{|x|}
$$

Note: By definition of sup we have $\|A\| \geq \frac{|A x|}{|x|}$ for all x and hence

$$
|A x| \leq\|A\||x|
$$

This is the form we'll most frequently use.
Intuitively: Think of $\|A\|$ as the largest possible spread of A. For example, if $\|A\|=2$ then we have $|A x| \leq 2|x|$ for all x, so $|A x|$ is never more than twice as big as $|x|$.
$\|A\|=\infty$ concretely means there is a sequence x_{k} of points such that

$$
\lim _{k \rightarrow \infty} \frac{\left|A x_{k}\right|}{\left|x_{k}\right|}=\infty
$$

So the stretch $\frac{|A x|}{|x|}$ gets uncontrollably big.
Note: In the definition of $\|A\|$, it's actually enough to assume $|x| \leq 1$ or even just $|x|=1$ because

$$
\frac{|A(c x)|}{|c x|}=\frac{|c A x|}{|c||x|}=\frac{|c||A x|}{|c||x|}=\frac{|A x|}{|x|}
$$

So if the property holds for x it holds for any multiple $c x$.

3. Properties of $\|A\|$

Let's now prove some properties of $\|A\|$.
First of all, could $\|A\|=\infty$? Not in finite dimensions!
Fact: If $A \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ then $\|A\|<\infty$ (that is A is bounded)
Proof: Finite-dimensionality is crucial here!
Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of \mathbb{R}^{n} and let $x \in \mathbb{R}^{n}$ be given. Then there are c_{1}, \ldots, c_{n} such that

$$
\begin{gathered}
x=c_{1} e_{1}+\cdots+c_{n} e_{n} \\
\text { Then }|A x|=\left|A\left(\sum_{i=1}^{n} c_{i} e_{i}\right)\right| \stackrel{\text { LIN }}{=}\left|\sum_{i=1}^{n} c_{i}\left(A e_{i}\right)\right| \leq \sum_{i=1}^{n}\left|c_{i}\right|\left|A e_{i}\right|
\end{gathered}
$$

However, for each i, we have

$$
\begin{gathered}
\left|c_{i}\right|=\sqrt{\left(c_{i}\right)^{2}} \leq \sqrt{\left(c_{1}\right)^{2}+\cdots+\left(c_{n}\right)^{2}}=|x| \\
\text { Hence }|A x| \leq \sum_{i=1}^{n} \underbrace{\left|c_{i}\right|}_{\leq|x|}\left|A e_{i}\right| \leq\left(\sum_{i=1}^{n}\left|A e_{i}\right|\right)|x|=C|x|
\end{gathered}
$$

Where $C=: \sum_{i=1}^{n}\left|A e_{i}\right|$ (doesn't depend on x).
From this it follows that for all $x, \frac{|A x|}{|x|} \leq C<\infty$

One of the most surprising facts about linear transformations is that A bounded implies A is continuous!

Fact: If $A \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ then A is uniformly continuous
Proof: Let $\epsilon>0$ be given, let $\delta=\frac{\epsilon}{\|A\|}$ then if $|x-y|<\delta$ then

$$
|A x-A y|=|A(x-y)| \leq\|A\||x-y|<\|A\|\left(\frac{\epsilon}{\|A\|}\right)=\epsilon \checkmark
$$

Next we want to show that $\|A\|$ behaves nicely with respect to sums and compositions

Facts:

(1) $\|A+B\| \leq\|A\|+\|B\|$
(2) $\|A B\| \leq\|A\|\|B\|$

Here $A B$ is the composition of A and B whenever it's defined
Why? (1) follows because for all x

$$
|(A+B) x|=|A x+B x| \leq|A x|+|B x| \leq\|A\||x|+\|B\||x|=(\|A\|+\|B\|)|x|
$$

And (2) follows similarly because for all x

$$
|(A B) x|=|A(B x)| \leq\|A\||B x| \leq\|A\|\|B\||x|
$$

Fun fact: If you define $d(A, B)=\|A-B\|$, then $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ actually becomes a metric space! So all the concepts of open sets and continuity makes sense for linear transformations as well. We'll discuss this below.

Relation to matrices: If A is a linear transformation with matrix

$$
[A]=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & a_{i j} & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

Then by calculating $|A x|$ and using Cauchy-Schwarz, you can actually show that (see section 9.9 of Rudin for details)

$$
\|A\| \leq \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left(a_{i j}\right)^{2}}
$$

There are examples where we get a strict inequality. For example, if

$$
A\left(x_{1}, x_{2}\right)=\left(x_{1}, 2 x_{2}\right)
$$

Then can show $\|A\|=2$ but

$$
[A]=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

And so the square root of the sum of squares of components is $\sqrt{5}$

$$
\text { 4. } A^{-1}
$$

Later in this chapter, we will talk a lot about inverse transformations. In order to do this, let's study the inverse transformation A^{-1} a bit more carefully.

Notation: $\mathcal{L}\left(\mathbb{R}^{n}\right)=\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ (space of linear operators on $\left.\mathbb{R}^{n}\right)$
Recall: $A \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is invertible if there is $A^{-1} \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ such that $A A^{-1}=A^{-1} A=I$ (the identity transformation)

Notation: $\Omega=$ set of invertible linear transformations on \mathbb{R}^{n}
Goal: Show Ω is open and moreover the mapping $A \rightarrow A^{-1}$ is continuous (with respect to the metric $d(A, B)=\|B-A\|$)

Lemma: If $A \in \Omega$ and $B \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ is such that

$$
\|B-A\|\left\|A^{-1}\right\|<1
$$

Then $B \in \Omega$
So if B is close enough to A, then B is invertible as well. This makes sense if Ω were open, and in fact helps us to show open-ness (see below)

Proof:

STEP 1: Let $\alpha=\frac{1}{\left\|A^{-1}\right\|}$ and $\beta=\|B-A\|$

$$
\text { Then } \beta=\|B-A\|<\frac{1}{\left\|A^{-1}\right\|}=\alpha \Rightarrow \beta<\alpha
$$

Then for every $x \in \mathbb{R}^{n}$, consider:

$$
\begin{aligned}
\alpha|x| & =\alpha\left|A^{-1} A x\right| \leq \alpha \underbrace{\left\|A^{-1}\right\|}_{\frac{1}{\alpha}}|A x|=|A x| \\
& =|(A-B) x+B x| \\
& \leq|(A-B) x|+|B x| \\
& \leq\|A-B\||x|+|B x| \\
& =\beta|x|+|B x|
\end{aligned}
$$

Therefore we obtain

$$
(\alpha-\beta)|x| \leq|B x|
$$

STEP 2: Claim: B is one-to-one

If $B x=0$ then since $\alpha>\beta$ we get

$$
\underbrace{(\alpha-\beta)}_{>0}|x| \leq|B x|=|0|=0
$$

Which in turn implies $|x|=0$ and so $x=0 \checkmark$
Since $B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one-to-one, it follows that B is also onto and hence B is invertible, that is $B \in \Omega$

Corollary: Ω is open
Suppose $A \in \Omega$ and let $r=\frac{1}{\left\|A^{-1 \|}\right\|}>0$ then the previous result shows that if $d(B, A)<r$ then $B \in \Omega$, so Ω is open.

Fact: The mapping $A \rightarrow A^{-1}$ is continuous
STEP 1: We need to study $B^{-1}-A^{-1}$ for B "close" to A

Claim \# 1:

$$
B^{-1}-A^{-1}=B^{-1}(A-B) A^{-1}
$$

Why?

$$
\begin{aligned}
B^{-1}(A-B) A^{-1} & =B^{-1}\left(A A^{-1}-B A^{-1}\right)=B^{-1}\left(I-B A^{-1}\right)=B^{-1}-B^{-1} B A^{-1} \\
& =B^{-1}-A^{-1} \checkmark
\end{aligned}
$$

From the claim, it follows that

$$
\left\|B^{-1}-A^{-1}\right\| \leq\left\|B^{-1}\right\| \underbrace{\|A-B\|}_{\beta} \underbrace{\left\|A^{-1}\right\|}_{\frac{1}{\alpha}}=\left\|B^{-1}\right\|\left(\frac{\beta}{\alpha}\right)
$$

So all is left is to study $\left\|B^{-1}\right\|$

STEP 2:

Claim \# 2:

$$
\left\|B^{-1}\right\| \leq \frac{1}{\alpha-\beta}
$$

Why? In the Lemma, we showed that for all x, we have

$$
(\alpha-\beta)|x| \leq|B x|
$$

Replacing x with $B^{-1} x$ in the above, we get

$$
(\alpha-\beta)\left|B^{-1} x\right| \leq\left|B B^{-1} x\right| \Rightarrow(\alpha-\beta)\left|B^{-1} x\right|<|x|
$$

And therefore $\frac{\left|B^{-1} x\right|}{|x|}<\frac{1}{\alpha-\beta}$ and hence $\left\|B^{-1}\right\| \leq \frac{1}{\alpha-\beta}$
STEP 3: Combining steps 1 and 2 we get

$$
\left\|B^{-1}-A^{-1}\right\| \leq\left\|B^{-1}\right\|\left(\frac{\beta}{\alpha}\right) \leq \frac{\beta}{(\alpha-\beta) \alpha}
$$

Let $\epsilon>0$ be given, then since

$$
\lim _{\beta \rightarrow 0} \frac{\beta}{(\alpha-\beta) \alpha}=0
$$

There is $\delta>0$ such that if $|\beta|<\delta$ then $\left|\frac{\beta}{(\alpha-\beta) \alpha}\right|<\epsilon$.
With that δ, if $\underbrace{\|A-B\|}_{\beta}<\delta$ then by the above, $\left\|B^{-1}-A^{-1}\right\|<\epsilon . \quad \square$

5. The Derivative in \mathbb{R}^{n}

With those preliminaries out of our way, we can finally embark on our exploration of derivatives in \mathbb{R}^{n}.

Goal: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, how to define the derivative $f^{\prime}(x)$?
First guess: By analogy with the scalar case, if $x \in \mathbb{R}^{n}$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

But here h is a vector, so it makes no sense to divide by h
So we need a definition of derivatives that doesn't have division in it.
What saves us is the concept of linear approximation from calculus:
Analogy: $(n=1)$ Note that if h is small, then

$$
f(x+h)=f(x)+f^{\prime}(x) h+\text { Smaller terms }
$$

(This was used to approximate quantities like $\sqrt{4.02}$ or $\ln (0.97)$)
This is the point of view that we'll take:
Important definition: Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $x \in \mathbb{R}^{n}$.
If there is a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
f(x+h)=f(x)+A h+r(h)
$$

$$
\text { Where } \lim _{h \rightarrow 0} \frac{|r(h)|}{|h|}=0
$$

Then we say f is differentiable at x and $f^{\prime}(x)=A$
Definition: f is differentiable if f is differentiable at all x
In other words, if you can expand $f(x+h)$ out with a small remainder, then the linear part is the derivative of f.

Before, $f^{\prime}(x)$ was just a number, but now it's something more dynamic, it's a linear transformation. Intuitively, if f distorts space, then $f^{\prime}(x)$ describes the linear part of the distortion.

Note: More commonly, people write $o(h)$ instead of $r(h)$, it's a term smaller than h

