
LECTURE 12: LIMSUP PROPERTIES

1. Limit Points are Closed

Video: Limit Points are Closed

Let S be the set of limit points of (sn). Then S isn’t just a random
set, it has a special structure:

Fact:

If (tn) is a sequence in S that converges to t, then t ∈ S

Note: In other words, S is a closed set

Proof: (assume that (sn) is bounded, but the fact is true in general)

STEP 1: Suppose (tk) is a sequence in S that converges to t, want to
show that t ∈ S.
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https://youtu.be/b1jYloJXDYY
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Since t1 ∈ S, there is a subsequence of (sn) that converges to t1.
So by the definition of a limit (with ϵ = 1), there is some sn1

with
|sn1

− t1| < 1.

Since t2 ∈ S, by the definition of a limit (with ϵ = 1
2), there is some

sn2
with |sn2

− t2| < 1
2

Note: Can assume n2 > n1. This is possible since there are infinitely
many sn2

as above, so choose one that comes after sn1

And in general, since tk ∈ S, there is some snk
with |snk

− tk| < 1
k , and,

as above, choose snk
with n1 < n2 < · · · < nk

Therefore, we obtain a subsequence (snk
) = (sn1

, sn2
, . . . ).
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STEP 2:

Claim: snk
→ t

This is because

|snk
− t| = |snk

− tk + tk − t| ≤ |snk
− tk|+ |tk − t| < 1

k
+ |tk − t|

But since tk → t (by assumption), we get 1
k + |tk − t| → 0 as k → ∞,

so by the squeeze theorem, limk→∞ snk
= t. ✓

Thus (snk
) is a subsequence of (sn) that converges to t, so t ∈ S ✓ □

2. Limsup Product Rule

Video: Limsup Product Rule

For the rest of today, we’ll do some more practice with lim sup. First,
let’s prove a neat product rule for lim sup.

WARNING: In general

lim sup
n→∞

sntn ̸=
(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
Example:

sn =

{
1 if n is odd

0 if n is even
tn =

{
0 if n is odd

1 if n is even

https://youtu.be/XIjqjyPz7UM
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Then lim supn→∞ sn = 1 and lim supn→∞ tn = 1. But for each n, either
sn = 0 or tn = 0, so sntn = 0, and therefore:

lim sup
n→∞

sntn = lim sup
n→∞

0 = 0 ̸= 1 =

(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
That said, not all is lost: Under some mild conditions of convergence,
we can show that:

Fact:

If (sn) converges to s > 0, and (tn) is any sequence, then

lim sup
n→∞

sntn =

(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
Note: It is important that s > 0 here. For s ≤ 0 this property is False.

Proof:

STEP 1: Let’s first show
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lim sup
n→∞

sntn ≥
(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
Let t = lim supn→∞ tn, which could be infinite!

Case 1: t ∈ R (t is finite)

Then, from last time, there is a subsequence (tnk
) that converges to

lim supn→∞ tn = t

But since (sn) converges to s, the subsequence (snk
) (with the same

nk) converges to s as well

Therefore limk→∞ snk
tnk

= st.

But then st is one possible limit point of (sntn), and since lim supn→∞ sntn
is the largest possible limit point of (sntn), we get:(

lim sup
n→∞

sntn

)
≥ st =

(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
✓
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We used that lim supn→∞ sn = limn→∞ sn = s, since (sn) converges to s

Case 2: t = ∞.

Then there is a subsequence (tnk
) of (tn) with tnk

→ ∞.

And so limk→∞ snk
tnk

= s(∞) = ∞ (since s > 0) and therefore:

lim sup
n→∞

sntn ≥ lim
k→∞

snk
tnk

= ∞ =

(
lim sup
n→∞

tn

)
lim sup
n→∞

sn✓

Case 3: t = −∞

Actually nothing to show, because(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
= s(−∞) = −∞

And therefore, since for any number x (even ±∞) we have x ≥ −∞,
we have

lim sup
n→∞

sntn ≥ −∞ =

(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
✓

STEP 2: Now let’s show

lim sup
n→∞

sntn ≤
(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
The amazing fact is that we can adapt our proof of STEP 1 to prove
this!

First of all, since sn → s > 0, there is some N such that, for all n > N ,
sn > 0, so, ignoring the first few terms if necessary, assume WLOG
that for all n, we have sn > 0.
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Then since sn → s and sn ̸= 0, 1
sn

→ 1
s , so by STEP 1, we have:

lim sup
n→∞

tn = lim sup
n→∞

(
1

sn

)
︸ ︷︷ ︸

→ 1
s

sntn
STEP 1
≥ 1

s

(
lim sup
n→∞

sntn

)

And therefore:
1

s

(
lim sup
n→∞

sntn

)
≤ lim sup

n→∞
tn

That is:

lim sup
n→∞

sntn ≤ s lim sup
n→∞

tn =

(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
✓

So combining steps 1 and 2, we get:

lim sup
n→∞

sntn = s lim sup
n→∞

tn =

(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
□
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3. Pre-Ratio Test

Video: Pre-Ratio Test

Finally, let’s prove an identity that will be very useful in our discussion
of the Ratio Test (in section 14)

Pre-Ratio Test:

If sn ̸= 0 for all n, then

lim inf
n→∞

∣∣∣∣sn+1

sn

∣∣∣∣ ≤ lim inf
n→∞

|sn|
1
n ≤ lim sup

n→∞
|sn|

1
n ≤ lim sup

n→∞

∣∣∣∣sn+1

sn

∣∣∣∣

This inequality will show that the root test is strictly better than the
ratio test. In fact, we have the following:

Corollary:

If limn→∞

∣∣∣sn+1

sn

∣∣∣ = L, then limn→∞ |sn|
1
n = L

So if the limit limn→∞

∣∣∣sn+1

sn

∣∣∣ exists, then limn→∞ |sn|
1
n exists. But it

could happen that limn→∞ |sn|
1
n exists but limn→∞

∣∣∣sn+1

sn

∣∣∣ doesn’t exist.
That’s why the root test is strictly better than the ratio test.

https://youtu.be/5gn9qXZqXpg
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Proof of Corollary: Suppose limn→∞

∣∣∣sn+1

sn

∣∣∣ = L, then:

L = lim inf
n→∞

∣∣∣∣sn+1

sn

∣∣∣∣ ≤ lim inf
n→∞

|sn|
1
n ≤ lim sup

n→∞
|sn|

1
n ≤ lim sup

n→∞

∣∣∣∣sn+1

sn

∣∣∣∣ = L

Therefore:

L ≤ lim inf
n→∞

|sn|
1
n ≤ lim sup

n→∞
|sn|

1
n ≤ L

Hence

lim inf
n→∞

|sn|
1
n = lim sup

n→∞
|sn|

1
n = L

And so, by the Limsup Squeeze Theorem

lim
n→∞

|sn|
1
n = L □
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Proof of Pre-Ratio Test:

Note: This proof is similar in spirit to Problem 12 in section 9, but
just a bit fancier because we’re using lim sup.

STEP 1: We want to show:

lim inf
n→∞

∣∣∣∣sn+1

sn

∣∣∣∣ ≤ lim inf
n→∞

|sn|
1
n ≤ lim sup

n→∞
|sn|

1
n ≤ lim sup

n→∞

∣∣∣∣sn+1

sn

∣∣∣∣
The middle inequality follows because lim inf ≤ lim sup and the first
inequality can be proven similar to the third inequality, so let’s just
show that

lim sup
n→∞

|sn|
1
n ≤ lim sup

n→∞

∣∣∣∣sn+1

sn

∣∣∣∣
Let L = lim sup

n→∞

∣∣∣∣sn+1

sn

∣∣∣∣
And we need to show that

lim sup
n→∞

|sn|
1
n ≤ L

Note that the inequality is true if L = ∞, so from now on assume
L < ∞.

Note: For reasons that will become apparent later, ideally we would
like to have some space/wiggle room between the limsup and L. In
order to get around that, notice that it’s enough to show that:

lim sup
n→∞

|sn|
1
n ≤ L1 for all L1 > L
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This is basically the same thing as saying that if a ≤ b+ ϵ for all ϵ > 0,
then a ≤ b

STEP 2: By definition of L and lim sup, we have

L = lim sup
n→∞

∣∣∣∣sn+1

sn

∣∣∣∣ = lim
N→∞

sup

{∣∣∣∣sn+1

sn

∣∣∣∣ | n > N

}

But since L < L1 by assumption, for N large enough, we have (see
picture with sup above)

sup

{∣∣∣∣sn+1

sn

∣∣∣∣ | n > N

}
< L1
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And so, by definition of sup, for all n > N ,∣∣∣∣sn+1

sn

∣∣∣∣ < L1 ⇒ |sn+1| < L1 |sn|

STEP 3: And so

|sn| < L1|sn−1| < L1 (L1|sn−2|) = (L1)
2 |sn−2| < (L1)

3 |sn−3| < . . .

And more generally:

Claim:
|sn| < (L1)

n−N |sN | for all n > N

This just follows from:

|sn| =
(

|sn|
|sn−1|

)(
|sn−1|
|sn−2|

)
. . .

(
|sN+1|
|sN |

)
|sN |

< (L1)(L1) · · · (L1)︸ ︷︷ ︸
n−N times

|sN |

=(L1)
n−N |sN |

STEP 4: But then, we get:
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|sn| < (L1)
n−N |sN | = (L1)

n (L1)
−N |sN | = (L1)

n a ⇒ |sn| < (L1)
n a

Where a = (L1)
−N |sN | > 0, and therefore:

|sn|
1
n < ((L1)

n a)
1
n = L1

(
a

1
n

)
And finally, taking lim sup, we get:

lim sup
n→∞

|sn|
1
n ≤ lim sup

n→∞
L1

(
a

1
n

)
= lim

n→∞
L1

(
a

1
n

)
= L1 lim

n→∞

(
a

1
n

)
= L1(1) = L1

Where we used limn→∞ a
1
n = 1 (Which is in section 9, see the Limit

Example 9 video)

Therefore we conclude that:

lim sup
n→∞

|sn|
1
n ≤ L1

And since L1 ≥ L was arbitrary, we get:

lim sup
n→∞

|sn|
1
n ≤ L = lim sup

n→∞

∣∣∣∣sn+1

sn

∣∣∣∣ □

https://youtu.be/Y-kfkpB_4P4
https://youtu.be/Y-kfkpB_4P4

	1. Limit Points are Closed
	2. Limsup Product Rule
	3. Pre-Ratio Test

