LECTURE 12: LIMSUP PROPERTIES

1. LiMIT POINTS ARE CLOSED

Video: Limit Points are Closed

Let S be the set of limit points of (s,). Then S isn’t just a random
set, it has a special structure:

If (¢,,) is a sequence in S that converges to t, then t € S

in S

|

o—0-0-00000 S
th— t

Note: In other words, S is a closed set
Proof: (assume that (s,) is bounded, but the fact is true in general)

STEP 1: Suppose (1) is a sequence in S that converges to t, want to
show that t € S.

Date: Thursday, October 7, 2021.


https://youtu.be/b1jYloJXDYY
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Sn

Since t; € S, there is a subsequence of (s,) that converges to t;.
So by the definition of a limit (with e = 1), there is some s,, with
‘Snl — tl‘ < 1.

Since ty € S, by the definition of a limit (with € = %), there is some
Sp, With |s,, — ta| < %

Note: Can assume no > n;. This is possible since there are infinitely
many s,, as above, so choose one that comes after s,,

And in general, since t;, € S, there is some s, with |s,, — ;| < %, and,
as above, choose s, with ny <ng <--- <mny

Therefore, we obtain a subsequence (s, ) = (Sp,, Snyy - - - )-
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STEP 2:

Claim: s, —1

This is because
1
’Snk—ﬂ = ’Snk—ﬁk—l—tk—t‘ < |Snk_tk‘+’tk_t’ < %+|tk—t|

But since ¢, — ¢ (by assumption), we get ¢ + [tx — ¢| — 0 as k — oo,
so by the squeeze theorem, limy_,o 5,, = 1. v

Thus (sy,,) is a subsequence of (s,,) that converges tot,sot € S v [

2. Limsuprp PropucT RULE

Video: Limsup Product Rule

For the rest of today, we’ll do some more practice with lim sup. First,
let’s prove a neat product rule for lim sup.

WARNING: In general

lim sup s,t, # (lim sup sn) <lim sup tn>

n—oo n—oo n—oo

n:

0 if n is even 1 if nis even

5{1 ifnisodd {o if n is odd



https://youtu.be/XIjqjyPz7UM
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limsu
Sn p
1 e o e o & o o o o o o
tn
O
& & ——eo—o—= r—eo—o—o—o-
1 2 3
Then limsup,,_,., s, = 1 and limsup,,_,, t, = 1. But for each n, either
=0ort,=0,so0 sn = 0, and therefore

limsup s,t, = limsup0=0+#1= <lim sup 5n> <1im sup tn)

n—oo n—oo n—oo n—oo

That said, not all is lost: Under some mild conditions of convergence,
we can show that:

If (s,) converges to s > 0, and (¢,) is any sequence, then

limsup s,t, = (lim sup sn) (lim sup tn)

n—oo n—oo n—oo

Note: It is important that s > 0 here. For s < 0 this property is False.
Proof:

STEP 1: Let’s first show
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lim sup s,t, > (lim sup sn) (lim sup tn>

n—oo n—oo n—oo

Let ¢t = lim sup,,_, . t,, which could be infinite!
Case 1: t € R (¢ is finite)

Then, from last time, there is a subsequence (¢,,) that converges to
limsup,,_,tn =1t

But since (s,) converges to s, the subsequence (s,,) (with the same
ni) converges to s as well

Therefore limy_,o Sy, tn, = st.

&

limsup [/
(Sntn) o . ¢

* ®

. Snktnk

Py ®

But then st is one possible limit point of (s,t,), and since lim sup,,_, ., Spt»
is the largest possible limit point of (s,t,), we get:

<lim sup sntn> > st = (lim sup sn> <lim sup tn> v
n—0o0 n—r00 n—00
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We used that limsup,,_, ., S, = lim,, . S, = s, since (s,,) converges to s
Case 2: t = 0.
Then there is a subsequence (t,,) of (¢,) with ¢, — oo.
And so limy_, Sy, tn, = s(0c0) = oo (since s > 0) and therefore:
limsup s,t, > lim s,,t, =00 = <lim sup tn> limsup s,v'
n—oo k—o0 n—o0 n—o00
Case 3: t = —©
Actually nothing to show, because

(lim sup sn) <lim sup tn> = s(—00) = —©
n—oo n—oo

And therefore, since for any number x (even +o0) we have © > —o0o,
we have

limsup s,t, > —o0 = (lim sup sn) (lim sup tn) v

n—o0 n—oo n—oo

STEP 2: Now let’s show

lim sup s,t, < (lim sup sn> (lim sup tn>
n—00 n—00 n—00
The amagzing fact is that we can adapt our proof of STEP 1 to prove

this!

First of all, since s, — s > 0, there is some N such that, for alln > N,
s, > 0, so, ignoring the first few terms if necessary, assume WLOG
that for all n, we have s, > 0.
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Sn

. ®

N

Then since s, — s and s, # 0, Si — %, so by STEP 1, we have:

' _ 1 STEP1 1 [
limsupt, =limsup | — ) spt, > — | limsups,t,

n—00 n—00 Sn S n—00

=3
And therefore:

n—oo n—o0

1
— (lim sup sntn> < limsupt,
S

That is:

limsup s,t, < slimsupt, = (lim sup sn) (lim sup tn> v

n—oo n—oo n—oo n—oo

So combining steps 1 and 2, we get:

lim sup s,t, = slimsupt, = (lim sup sn> <lim sup tn) ]

n—oo n—oo n—oo n—oo
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3. PRE-RATIO TEST

Video: Pre-Ratio Test

Finally, let’s prove an identity that will be very useful in our discussion
of the Ratio Test (in section 14)

Pre-Ratio Test:

If s, # 0 for all n, then

liminf |21 < liminf \snﬁ < limsup |sn|% < limsup Sntl
n—00 Sn n—00 n—00 n—00 Sn
liminf Root limsup Root
. s s .
liminf Ratio limsup Ratio

This inequality will show that the root test is strictly better than the
ratio test. In fact, we have the following:

Sn+1

= L, then lim,,_, |sn|% =N

If lim,, oo

sn+1

S .
exists, then lim,,_, |s,|" exists. But it

So if the limit lim,, .

1
could happen that lim,, ., |s,|" exists but lim,, ‘Sg“ ‘ doesn’t exist.

That’s why the root test is strictly better than the ratio test.


https://youtu.be/5gn9qXZqXpg
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|Sn| /™ exists

|Sn+1/Sn| exists

Sn41

Proof of Corollary: Suppose lim,, = L, then:

. . Sna1 . . 1 . 1 . Sn+1
L = liminf < liminf |s,|* < limsup|s,|" < limsup =L
n—0o0 Sn n—00 n—00 n—o00 Sn
Therefore:
o S 1
L <liminf |s,|" < limsup |s,|» < L
n—00 n—00
Hence

SI=

lim inf |sn|% = limsup |s,|" = L
(0 ¢]

n— Nn—00

And so, by the Limsup Squeeze Theorem

lim \sn\l =L O

n—oo
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Proof of Pre-Ratio Test:

Note: This proof is similar in spirit to Problem 12 in section 9, but
just a bit fancier because we're using lim sup.

STEP 1: We want to show:

Sn+1
Sn

Sn+1
Sn

F I
< liminf |s,|* < limsup|s,|” < limsup
n—00 n—00 n—00

lim inf
n—oo

The middle inequality follows because liminf < limsup and the first
inequality can be proven similar to the third inequality, so let’s just
show that

. 1 . Sn+1
limsup |s,|" < limsup
n—00 n—00 Sn
. Sn+1
Let L = limsup
n—oo STL

And we need to show that

lim sup |3n|% <L

n—oo

Note that the inequality is true if L = oo, so from now on assume
L < o0.

Note: For reasons that will become apparent later, ideally we would
like to have some space/wiggle room between the limsup and L. In
order to get around that, notice that it’s enough to show that:

lim sup \snﬁ < Lyforall L1 > L

n—oo
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] 1/n
limsup |Sn|Y L L
This is basically the same thing as saying that if a < b+ € for all € > 0,

then a < b

STEP 2: By definition of L and lim sup, we have

S
! :]\lrim sup{| ot \n>N}

— 00 n

5
L = limsup +

n—oo Sn

. sup
L ] * b - IJ
L L
®
|Sn+1/Sn .

But since L < Lj by assumption, for N large enough, we have (see
picture with sup above)

sup {

Sn+1

\n>N}<L1

Sn
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And so, by definition of sup, for all n > N,

Sn+1

< I = |8n+1| < Iy |5n‘

n

STEP 3: And so
‘Sn| < L1|Sn_1| < L1 (Lllsn_g‘) = (L1)2 ‘Sn_2| < (Ll)g |Sn_3’ < ...

And more generally:

Claim:
0] < (L1)" ™ |sy| for all n > N

Ll L1 L1 Ll Ll
N Y A A/

1\} 1\I‘+1 ‘ 11-2 I;-l n
(n-N) times

This just follows from:

5] = ( EN ) (\sn 1\) (|SN+1|) syl
! \Sn 1| ’371 2\ ’3N‘
) (L) [sn]

n— N times

= (L))" " |sn]

STEP 4: But then, we get:
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[ < (L))" sn| = (L0)" (La) ™ [sw| = (L))" a = || < (L1)"a
Where a = (L) " |sy| > 0, and therefore:

sal” < (L) )" = Ly (a?)

And finally, taking lim sup, we get:

lim sup ]sn\% < limsup L4 (arll> = lim I, (arll> = [, lim <arll> =L(1) =L,

n—00 n—00 n—00 n—00

Where we used lim,,_, an = 1 (Which is in section 9, see the Limit
Example 9 video)

Therefore we conclude that:

lim sup |sn|% < I
n—oo

And since Ly > L was arbitrary, we get:

Sn+1
Sn

]

1 .
limsup |s,|" < L = limsup



https://youtu.be/Y-kfkpB_4P4
https://youtu.be/Y-kfkpB_4P4
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