LECTURE 12: THE DERIVATIVE IN \mathbb{R}^{n}

1. The Derivative in \mathbb{R}^{n}

Definition: Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $x \in \mathbb{R}^{n}$
If there is a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
f(x+h)=f(x)+A h+r(h) \quad \text { with } \lim _{h \rightarrow 0} \frac{|r(h)|}{|h|}=0
$$

Then we say f is differentiable at x and $f^{\prime}(x)=A$
Definition: f is differentiable if f is differentiable at all x
Note: More commonly, people write $o(h)$ instead of $r(h)$, it's a sublinear term, smaller than h

Before, $f^{\prime}(x)$ was just a number, but now it's something more dynamic, it's a linear transformation. Intuitively, if f distorts space, then $f^{\prime}(x)$ describes the linear part of the distortion.

Here are a couple of immediate properties
Fact: If $f(x)=A x$ where A is a linear transformation, then $f^{\prime}(x)=A$ Because $f(x+h)=A(x+h)=A x+A h=f(x)+A h+r(h)$

Where $r(h) \equiv 0$, which is sublinear
Fact: If f is differentiable at x then f is continuous at x

$$
\begin{aligned}
& \text { Follows because } f(x+h)-f(x)=f^{\prime}(x) h+r(h) \\
& \text { So } \lim _{h \rightarrow 0} f(x+h)-f(x)=\lim _{h \rightarrow 0} f^{\prime}(x) h+r(h)=0
\end{aligned}
$$

Hence $\lim _{h \rightarrow 0} f(x+h)=f(x)$

2. UniqUENESS

Slightly trickier to prove is uniqueness of $f^{\prime}(x)$
Fact: The derivative is unique

Proof:

STEP 1: Suppose f has two derivatives A and B at x
Then for all $y \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
& f(x+y)=f(x)+A y+r(y) \\
& f(x+y)=f(x)+B y+s(y)
\end{aligned}
$$

Subtracting the second equation from the first, we get

$$
A y-B y=s(y)-r(y)
$$

In particular, this implies that

$$
\lim _{y \rightarrow 0} \frac{|A y-B y|}{|y|}=\lim _{y \rightarrow 0} \frac{|s(y)-r(y)|}{|y|} \leq \lim _{y \rightarrow 0} \frac{|s(y)|+|r(y)|}{|y|}=0
$$

STEP 2: Notice that for any $t \in \mathbb{R}, \lim _{t \rightarrow 0} t y=0$ and so by the above

$$
0=\lim _{t \rightarrow 0} \frac{|A(t y)-B(t y)|}{|t y|} \stackrel{\text { LIN }}{=} \lim _{t \rightarrow 0} \frac{|t||A y-B y|}{|t||y|}=\lim _{t \rightarrow 0} \underbrace{\frac{|A y-B y|}{|y|}}_{\text {Constant }}=\frac{|A y-B y|}{|y|}
$$

So in fact for every y we have

$$
\frac{|A y-B y|}{|y|}=0 \Rightarrow|A y-B y|=0 \Rightarrow A y=B y \Rightarrow A=B
$$

3. The Chain Rule

Video: Multivariable Chain Rule
Theorem: [Chain Rule]
If f and g are differentiable and $F(x)=g(f(x))$ then

$$
F^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)
$$

Note: The right-hand-side is the composition (or matrix multiplication) of the two derivatives $g^{\prime}(f(x))$ and $f^{\prime}(x)$. So the derivative of the composition $g(f(x))$ is the composition of derivatives. This is what makes this formula extremely elegant.

Proof:

STEP 1: Fix x and let $A=f^{\prime}(x)$ and $B=g^{\prime}(f(x))$. Using the definition of F then the definition of f^{\prime} and of g^{\prime} we get

$$
\begin{aligned}
F(x+h) & =g(f(x+h))=g\left(f(x)+A h+r_{f}(h)\right) \\
& =g(f(x))+B\left(A h+r_{f}(h)\right)+r_{g}\left(A h+r_{f}(h)\right)
\end{aligned}
$$

$$
F(x+h)=F(x)+B A h+B r_{f}(h)+r_{g}\left(A h+r_{f}(h)\right)
$$

If we show that the remainder terms are sublinear, then we would be done because then

$$
F^{\prime}(x)=B A=g^{\prime}(f(x)) f^{\prime}(x)
$$

STEP 2: Remainder Terms

$$
\frac{\left|B r_{f}(h)\right|}{|h|} \leq\|B\|\left(\frac{\left|r_{f}(h)\right|}{|h|}\right) \xrightarrow{h \rightarrow 0} 0
$$

For the second term, first notice that

$$
\left|A h+r_{f}(h)\right| \leq\|A\||h|+\left|r_{f}(h)\right| \xrightarrow{h \rightarrow 0} 0
$$

Therefore, by definition of r_{g} we have

$$
\frac{\left|r_{g}\left(A h+r_{f}(h)\right)\right|}{|h|}=\frac{\left|r_{g}\left(A h+r_{f}(h)\right)\right|}{\left|A h+r_{f}(h)\right|} \times \frac{\left|A h+r_{f}(h)\right|}{|h|} \xrightarrow{h \rightarrow 0} 0
$$

This follows from the definition of r_{g} and because its input goes to 0 , while the second term is bounded.

Technical Note: It is possible that $A h+r_{f}(h)=0$, but this can be dealt with by redefining $r_{g}(0)=0$ if necessary.

Aside: There is also an analog of the product rule $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$, but it is a bit more difficult to state, because it involves bilinear maps ${ }^{1}$

4. Partial Derivatives

[^0]So far the derivative $f^{\prime}(x)$ we've been talking about is called the total derivative or the Fréchet Derivative.

This is in contrast with the partial derivatives you learned in Multivariable Calculus:

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of \mathbb{R}^{n} and suppose $f=\left(f_{1}, \ldots, f_{m}\right)$
Definition: The $(i, j)^{t h}$ partial derivative of f at x is

$$
\frac{\partial f_{i}}{\partial x_{j}}(x)=\lim _{t \rightarrow 0} \frac{f_{i}\left(x+t e_{j}\right)-f_{i}(x)}{t}
$$

Note: The book writes $D_{j} f_{i}$ for $\frac{\partial f_{i}}{\partial x_{j}}$
While this definition is more natural, the total derivative is better:
Theorem: If the total derivative $f^{\prime}(x)$ exists, then the partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ exist, and in fact

$$
\left[f^{\prime}(x)\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

Proof: Fix j, then since f is differentiable at x, we have

$$
f\left(x+t e_{j}\right)-f(x)=f^{\prime}(x)\left(t e_{j}\right)+r\left(t e_{j}\right)
$$

Where $\lim _{t \rightarrow 0} \frac{\left|r\left(t e_{j}\right)\right|}{t e_{j}}=\lim _{t \rightarrow 0} \frac{\left|r\left(t e_{j}\right)\right|}{|t|}=0$
Dividing both sides by t and using linearity of $f^{\prime}(x)$ we get

$$
\lim _{t \rightarrow 0} \frac{f\left(x+t e_{j}\right)-f(x)}{t}=f^{\prime}(x)\left(e_{j}\right)
$$

The left hand side is by definition $\left[\begin{array}{c}\frac{\partial f_{1}}{\partial x_{j}} \\ \vdots \\ \frac{\partial f_{m}}{\partial x_{j}}\end{array}\right]$ and right-hand-side is by definition the j-th column of $\left[f^{\prime}(x)\right.$], so both columns are equal. Since this is true for all j, the two matrices are equal.

In general, the mere existence of the partial derivatives does not imply that f is differentiable. But it is true if you assume that the partial derivatives are continuous:

Theorem: If the partial derivatives of f exist and are continuous, then f is differentiable

Proof: \square^{2}

STEP 1:

Fix x and let A be the linear transformation whose matrix is $[A]=$ $\left[\frac{\partial f_{i}}{\partial x_{j}}(x)\right]$. We just need to show that

$$
r(h)=f(x+h)-f(x)-A h \text { is sublinear }
$$

Because then $f^{\prime}(x)$ exists and equals A
Note: From now on, assume $m=1$, so f is a scalar function (else do the proof below with f_{i} instead of f)

STEP 2: Consider the path $\sigma_{1} \rightarrow \sigma_{2} \rightarrow \cdots \rightarrow \sigma_{n}$ that goes from x to $x+h$ in n straight segments (see picture in lecture)

[^1]So σ_{1} connects $x_{0}=x$ with $x_{1}=x+h_{1} e_{1}$ and σ_{2} connects x_{1} with $x_{2}=x_{1}+h_{2} e_{2}$, and σ_{n} connects x_{n-1} with $x_{n}=x+h$

More precisely, for each j define $\sigma_{j}:[0,1] \rightarrow \mathbb{R}$ as

$$
\begin{gathered}
\sigma_{j}(t)=x_{j-1}+t h_{j} e_{j} \\
\text { Define } g_{j}(t)=f\left(\sigma_{j}(t)\right)
\end{gathered}
$$

So g_{j} collects the value of f on the path. Notice $g_{j}:[0,1] \rightarrow \mathbb{R}$
Then by the Mean Value Theorem applied to g on $[0,1]$ there is $t_{j} \in$ $(0,1)$ such that

$$
g_{j}(1)-g_{j}(0)=g_{j}^{\prime}\left(t_{j}\right)
$$

But $g_{j}(1)=f\left(\sigma_{j}(1)\right)=f\left(x_{j}\right)$ and $g_{j}(0)=f\left(x_{j-1}\right)$ and

$$
\begin{aligned}
g_{j}^{\prime}\left(t_{j}\right) & =\lim _{t \rightarrow 0} \frac{g_{j}\left(t_{j}+t\right)-g_{j}\left(t_{j}\right)}{t} \\
& =\lim _{t \rightarrow 0} \frac{f\left(\sigma_{j}\left(t_{j}+t\right)\right)-f\left(\sigma_{j}\left(t_{j}\right)\right)}{t} \\
& \left.=\lim _{t \rightarrow 0} \frac{f\left(\sigma_{j}\left(t_{j}\right)+t h_{j} e_{j}\right)-f\left(\sigma_{j}\left(t_{j}\right)\right)}{t h_{j}} h_{j} \quad \text { (using the def of } \sigma_{j}\right) \\
& =\frac{\partial f}{\partial x_{j}}\left(\sigma_{j}\left(t_{j}\right)\right) h_{j} \\
& =\frac{\partial f}{\partial x_{j}}\left(c_{j}\right) h_{j} \quad \text { where } c_{j}=: \sigma_{j}\left(t_{j}\right)
\end{aligned}
$$

Therefore the above becomes

$$
f\left(x_{j}\right)-f\left(x_{j-1}\right)=\frac{\partial f}{\partial x_{j}}\left(c_{j}\right) h_{j}
$$

STEP 3: Therefore we get

$$
\begin{aligned}
& r(h)=f(x+h)-f(x)-A h \\
&=\left(\sum_{j=1}^{n} f\left(x_{j}\right)-f\left(x_{j-1}\right)\right)-A h \quad \text { Telescoping Sum } \\
&=\left(\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}\left(c_{j}\right) h_{j}\right)-\left(\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(x) h_{j}\right) \quad \text { Definition of } A \\
&=\sum_{j=1}^{n}\left[\frac{\partial f}{\partial x_{j}}\left(c_{j}\right)-\frac{\partial f}{\partial x_{j}}(x)\right] h_{j} \\
&|r(h)| \leq \sum_{j=1}^{n}\left|\frac{\partial f}{\partial x_{j}}\left(c_{j}\right)-\frac{\partial f}{\partial x_{j}}(x)\right|\left|h_{j}\right| \stackrel{\text { C-S }}{\leq}\left(\sum_{j=1}^{n}\left|\frac{\partial f}{\partial x_{j}}\left(c_{j}\right)-\frac{\partial f}{\partial x_{j}}(x)\right|^{2}\right)^{\frac{1}{2}}|h| \\
& \frac{|r(h)|}{|h|} \leq\left(\sum_{j=1}^{n}\left|\frac{\partial f}{\partial x_{j}}\left(c_{j}\right)-\frac{\partial f}{\partial x_{j}}(x)\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

But since $c_{j} \rightarrow x$ as $h \rightarrow 0$ and the $\frac{\partial f}{\partial x_{j}}$ are continuous, this implies that the term in brackets go to 0 as $h \rightarrow 0$. Therefore we have $\lim _{h \rightarrow 0} \frac{|r(h)|}{|h|}=0$. Hence f is differentiable at x

[^0]: ${ }^{1}$ See Pugh, Chapter 5 Theorem 9(d) for details

[^1]: ${ }^{2}$ This proof is taken from Theorem 8 in Chapter 5 of Pugh's textbook

