
LECTURE 12: THE DERIVATIVE IN Rn

1. The Derivative in Rn

Definition: Suppose f : Rn → Rm and x ∈ Rn

If there is a linear transformation A : Rn → Rm such that

f(x+ h) = f(x) + Ah+ r(h) with lim
h→0

|r(h)|
|h|

= 0

Then we say f is differentiable at x and f ′(x) = A

Definition: f is differentiable if f is differentiable at all x

Note: More commonly, people write o(h) instead of r(h), it’s a sub-
linear term, smaller than h

Before, f ′(x) was just a number, but now it’s something more dynamic,
it’s a linear transformation. Intuitively, if f distorts space, then f ′(x)
describes the linear part of the distortion.

Here are a couple of immediate properties

Fact: If f(x) = Ax where A is a linear transformation, then f ′(x) = A

Because f(x+ h) = A(x+ h) = Ax+ Ah = f(x) + Ah+ r(h)
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Where r(h) ≡ 0, which is sublinear

Fact: If f is differentiable at x then f is continuous at x

Follows because f(x+ h)− f(x) = f ′(x)h+ r(h)

So lim
h→0

f(x+ h)− f(x) = lim
h→0

f ′(x)h+ r(h) = 0

Hence limh→0 f(x+ h) = f(x) �

2. Uniqueness

Slightly trickier to prove is uniqueness of f ′(x)

Fact: The derivative is unique

Proof:

STEP 1: Suppose f has two derivatives A and B at x

Then for all y ∈ Rn, we have

f(x+ y) =f(x) + Ay + r(y)

f(x+ y) =f(x) +By + s(y)

Subtracting the second equation from the first, we get

Ay −By = s(y)− r(y)

In particular, this implies that

lim
y→0

|Ay −By|
|y|

= lim
y→0

|s(y)− r(y)|
|y|

≤ lim
y→0

|s(y)|+ |r(y)|
|y|

= 0
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STEP 2: Notice that for any t ∈ R, limt→0 ty = 0 and so by the above

0 = lim
t→0

|A(ty)−B(ty)|
|ty|

LIN
= lim

t→0

|t| |Ay −By|
|t| |y|

= lim
t→0

|Ay −By|
|y|︸ ︷︷ ︸

Constant

=
|Ay −By|
|y|

So in fact for every y we have

|Ay −By|
|y|

= 0⇒ |Ay −By| = 0⇒ Ay = By ⇒ A = B �

3. The Chain Rule

Video: Multivariable Chain Rule

Theorem: [Chain Rule]

If f and g are differentiable and F (x) = g(f(x)) then

F ′(x) = g′(f(x))f ′(x)

Note: The right-hand-side is the composition (or matrix multiplica-
tion) of the two derivatives g′(f(x)) and f ′(x). So the derivative of the
composition g(f(x)) is the composition of derivatives. This is what
makes this formula extremely elegant.

Proof:

STEP 1: Fix x and let A = f ′(x) and B = g′(f(x)). Using the
definition of F then the definition of f ′ and of g′ we get

F (x+ h) =g(f(x+ h)) = g(f(x) + Ah+ rf(h))

=g(f(x)) +B (Ah+ rf(h)) + rg (Ah+ rf(h))

https://www.youtube.com/watch?v=gMSdmLftNTU
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F (x+ h) = F (x) +BAh+Brf(h) + rg (Ah+ rf(h))

If we show that the remainder terms are sublinear, then we would be
done because then

F ′(x) = BA = g′(f(x))f ′(x)

STEP 2: Remainder Terms

|Brf(h)|
|h|

≤ ‖B‖
(
|rf(h)|
|h|

)
h→0→ 0

For the second term, first notice that

|Ah+ rf(h)| ≤ ‖A‖ |h|+ |rf(h)| h→0→ 0

Therefore, by definition of rg we have

|rg(Ah+ rf(h))|
|h|

=
|rg(Ah+ rf(h))|
|Ah+ rf(h)|

× |Ah+ rf(h)|
|h|

h→0→ 0

This follows from the definition of rg and because its input goes to 0,
while the second term is bounded. �

Technical Note: It is possible that Ah + rf(h) = 0, but this can be
dealt with by redefining rg(0) = 0 if necessary.

Aside: There is also an analog of the product rule (fg)′ = f ′g + fg′,
but it is a bit more difficult to state, because it involves bilinear maps1

4. Partial Derivatives

1See Pugh, Chapter 5 Theorem 9(d) for details
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So far the derivative f ′(x) we’ve been talking about is called the total
derivative or the Fréchet Derivative.

This is in contrast with the partial derivatives you learned in Mul-
tivariable Calculus:

Let {e1, . . . , en} be the standard basis of Rn and suppose f = (f1, . . . , fm)

Definition: The (i, j)th partial derivative of f at x is

∂fi
∂xj

(x) = lim
t→0

fi(x+ tej)− fi(x)

t

Note: The book writes Djfi for ∂fi
∂xj

While this definition is more natural, the total derivative is better:

Theorem: If the total derivative f ′(x) exists, then the partial deriva-
tives ∂fi

∂xj
exist, and in fact

[f ′(x)] =


∂f1
∂x1
· · · ∂f1

∂xn
...

...
∂fm
∂x1
· · · ∂fm

∂xn


Proof: Fix j, then since f is differentiable at x, we have

f(x+ tej)− f(x) = f ′(x) (tej) + r(tej)

Where limt→0
|r(tej)|
tej

= limt→0
|r(tej)|
|t| = 0

Dividing both sides by t and using linearity of f ′(x) we get

lim
t→0

f(x+ tej)− f(x)

t
= f ′(x)(ej)
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The left hand side is by definition


∂f1
∂xj

...
∂fm
∂xj

 and right-hand-side is by def-

inition the j−th column of [f ′(x)], so both columns are equal. Since
this is true for all j, the two matrices are equal. �

In general, the mere existence of the partial derivatives does not imply
that f is differentiable. But it is true if you assume that the partial
derivatives are continuous:

Theorem: If the partial derivatives of f exist and are continuous,
then f is differentiable

Proof:2

STEP 1:

Fix x and let A be the linear transformation whose matrix is [A] =
[ ∂fi∂xj

(x)]. We just need to show that

r(h) = f(x+ h)− f(x)− Ah is sublinear

Because then f ′(x) exists and equals A

Note: From now on, assume m = 1, so f is a scalar function (else do
the proof below with fi instead of f)

STEP 2: Consider the path σ1 → σ2 → · · · → σn that goes from x to
x+ h in n straight segments (see picture in lecture)

2This proof is taken from Theorem 8 in Chapter 5 of Pugh’s textbook
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So σ1 connects x0 = x with x1 = x + h1e1 and σ2 connects x1 with
x2 = x1 + h2e2, and σn connects xn−1 with xn = x+ h

More precisely, for each j define σj : [0, 1]→ R as

σj(t) = xj−1 + thjej

Define gj(t) = f (σj(t))

So gj collects the value of f on the path. Notice gj : [0, 1]→ R

Then by the Mean Value Theorem applied to g on [0, 1] there is tj ∈
(0, 1) such that

gj(1)− gj(0) = g′j(tj)

But gj(1) = f(σj(1)) = f(xj) and gj(0) = f(xj−1) and

g′j(tj) = lim
t→0

gj(tj + t)− gj(tj)
t

= lim
t→0

f(σj(tj + t))− f(σj(tj))

t

= lim
t→0

f(σj(tj) + thjej)− f(σj(tj))

thj
hj (using the def of σj)

=
∂f

∂xj
(σj(tj))hj

=
∂f

∂xj
(cj) hj where cj =: σj(tj)

Therefore the above becomes

f(xj)− f(xj−1) =
∂f

∂xj
(cj)hj
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STEP 3: Therefore we get

r(h) =f(x+ h)− f(x)− Ah

=

(
n∑

j=1

f(xj)− f(xj−1)

)
− Ah Telescoping Sum

=

(
n∑

j=1

∂f

∂xj
(cj)hj

)
−

(
n∑

j=1

∂f

∂xj
(x)hj

)
Definition of A

=
n∑

j=1

[
∂f

∂xj
(cj)−

∂f

∂xj
(x)

]
hj

|r(h)| ≤
n∑

j=1

∣∣∣∣ ∂f∂xj (cj)−
∂f

∂xj
(x)

∣∣∣∣ |hj| C-S
≤

(
n∑

j=1

∣∣∣∣ ∂f∂xj (cj)−
∂f

∂xj
(x)

∣∣∣∣2
) 1

2

|h|

|r(h)|
|h|

≤

(
n∑

j=1

∣∣∣∣ ∂f∂xj (cj)−
∂f

∂xj
(x)

∣∣∣∣2
) 1

2

But since cj → x as h → 0 and the ∂f
∂xj

are continuous, this im-

plies that the term in brackets go to 0 as h → 0. Therefore we have

limh→0
|r(h)|
|h| = 0. Hence f is differentiable at x �
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