
LECTURE 13: SERIES (I)

In the next series of lectures (pun intended), we’ll talk about series,
which are infinite sums of sequences.

1. Partial Sums

Video: Partial Sums

Goal: Given a sequence (an), what does it mean to take the sum of
all the values of an

∞∑
n=1

an = a1 + a2 + a3 + · · · =?

Intuitively: A series is just a really big sum, think a1 + a2 + . . . a500

Example 1:

What would it mean for

∞∑
n=1

1

2n
=

1

2
+

1

4
+

1

8
+ · · · = 1?

(We will prove that formula in the next section)

The sum above is an infinite sum. Since we only know about finite
sums, let’s look at what are called the partial sums :

Date: Tuesday, October 12, 2021.

1

https://youtu.be/YeNUuFksy4s
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s1 =a1 =
1

2
= 0.5

s2 =a1 + a2 =
1

2
+

1

4
=

3

4
= 0.75

s3 =a1 + a2 + a3 = 0.875

s4 =a1 + a2 + a3 + a4 = 0.9375

s5 ≈0.967

s6 ≈0.984

s7 ≈0.992

In general:

sn =
n∑

k=1

ak = a1 + a2 + · · ·+ an

In this example, the partial sums sn converge to S = 1 as n → ∞

And it’s this limit S that we call
∑∞

n=1 an:
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Definition:

∞∑
n=1

an = S means lim
n→∞

sn = S , where

sn =
n∑

k=1

ak = a1 + a2 + · · ·+ an

Definition:

If the above limit exists, then we say
∑

an converges. Else, if
S = ±∞ and/or the limit does not exist, then

∑
an diverges.

Example 2:

What is ∞∑
n=1

1

n(n+ 1)

Look at:1

sn =
n∑

k=1

1

k(k + 1)
=

n∑
k=1

1

k
− 1

k + 1

=1−
�
�
��1

2
+

�
�
��1

2
−

�
�
��1

3
+

�
�
��1

3
−

�
�
��1

4
+ · · ·+

�
�
��1

n
− 1

n+ 1

=1− 1

n+ 1
→1

Therefore, by definition,

1You can take 1
k(k+1) = 1

k − 1
k+1 as a given, you don’t need to show it, but usually you’d just

use partial fractions from calculus



4 LECTURE 13: SERIES (I)

∞∑
n=1

1

n(n+ 1)
= 1

Here is a useful class of convergent/divergent series that we’ll use over
and over again:

Fact (p-series):

∞∑
n=1

1

np

Converges if and only if p > 1

Example 3: (1-series)

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · · = ∞

Example 4: (2-series)

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+ . . . Converges

Note: In fact, one can show that the value is π2

6 , see the following

optional video if interested: Sum of 1
n2 .

Note: This says something really interesting about numbers! There
are much fewer integers that are squares (like 16 = 42 or 49 = 72) than
there are integers. So few, in fact, that the 2−series converges whereas
the 1−series diverges.

https://www.youtube.com/watch?v=YMleINbiNlE
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Finally, here’s an important fact that is used over and over again in
calculus (but that the book doesn’t seem to mention)

Fact:

Suppose an ≥ 0 for all n

Then
∑

an converges if and only if (sn) (as above) is bounded

Note: This is what calculus textbooks mean when they say “A series
converges if and only if it is bounded”

Why? Notice that, since an ≥ 0, (sn) is non-decreasing, at each step,
you’re just adding non-negative terms; compare with Example 1, where
we had s1 = 0.5, s2 = 0.75, s3 = 0.875.
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(⇐) (sn) is bounded and non-decreasing, so by the Monotone Sequence
Theorem, (sn) converges, so by definition

∑
an converges

(⇒) If (sn) is not bounded, then, since (sn) is non-decreasing, this
implies sn → ∞, and therefore

∑
an = ∞, which diverges □

2. Geometric Series

Video: Geometric Series

In this section, we’ll cover an important example of a series that’s used
over and over again in calculus and analysis, the geometric series :

https://youtu.be/IinsOD7W31s
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Example 5:

What is
∞∑
n=0

rn = 1 + r + r2 + . . .

Note: If r ≤ −1 or r ≥ 1, then rn ↛ 0, in which case
∑

rn diverges
(by the divergence test; see next section).

Therefore, from now on, consider only −1 < r < 1 (that is, |r| < 1).

Trick: Consider:

sn =
n∑

k=0

rk = 1 + r + r2 + · · ·+ rn

rsn =r
(
1 + r + r2 + . . . rn

)
sn =1 + r + r2 + · · ·+ rn

rsn = r + r2 + · · ·+ rn + rn+1

Therefore:

sn − rsn =1 +(((((((((((

r + r2 + · · ·+ rn −
((((((((((((
(r + r2 + · · ·+ rn)− rn+1

(1− r)sn =(1− rn+1)

sn =
1− rn+1

1− r

sn = 1 + r + r2 + · · ·+ rn =

(
1− rn+1

1− r

)
Now since −1 < r < 1, then rn+1 → 0 as n → ∞, so
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sn =

(
1− rn+1

1− r

)
→ 1− 0

1− r
=

1

1− r

And therefore, by definition:

Geometric Series:

∞∑
n=0

rn =
1

1− r

This series converges if and only if |r| < 1

Example 6:

Find
∞∑
n=2

(
−1

3

)n

First of all, the series converges since
∣∣−1
3

∣∣ = 1
3 < 1.

Now, by the formula for the geometric series, we have:

∞∑
n=0

(
−1

3

)n

= 1− 1

3
+

1

9
+ · · · = 1

1−
(
−1

3

) =
1
4
3

=
3

4

And therefore:

∞∑
n=2

(
−1

3

)n

=
1

9
− 1

27
+ · · · = 1

9

(
1− 1

3
+

1

9
+ . . .

)
=

1

9

(
3

4

)
=

1

12

3. The Cauchy Criterion

Video: The Cauchy Criterion

https://youtu.be/aG1BCipqDIo
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We would now like to prove some convergence tests for series, like the
Divergence Test and Comparison Test (see below). In order to achieve
this, we need to find a better way to define “

∑
an converges”

For this, let me remind you of the definition of Cauchy2 sequences from
section 10.

Recall:

A sequence (sn) is Cauchy if, for all ϵ > 0, there is N such that
if m,n > N , then

|sn − sm| < ϵ

Intuitively, this means that, after the threshold N , the terms (sn) get
closer and closer together.

Recall:

In R, (sn) converges ⇔ (sn) is Cauchy

2Voulez-vous Cauchy avec moi?
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Which gives an alternative definition of convergence, in the case where
your space is R.

Let’s tweak this definition in order to make it particularly attractive
for series. For this, note the following:

(1) WLOG, assume n > m. This doesn’t affect the result since
|sn − sm| = |sm − sn|

(2) Replace m with m− 1 (ok since m is arbitrary)

(3) n > m− 1 ⇔ n ≥ m (for example, if n > 8, then n ≥ 9)

Therefore, using the remarks above, the above definition becomes:

Definition:

(sn) is Cauchy if, for all ϵ > 0, there is N such that if n≥m > N ,
then

|sn − sm−1| < ϵ

Important Application:

Suppose now that sn is the sequence of partial sums, that is

sn =
n∑

k=1

ak = a1 + · · ·+ an

Then:

sn − sm−1 =(a1 + · · ·+ am−1 + am + · · ·+ an)− (a1 + a2 + · · ·+ am−1)

=am + · · ·+ an

=
n∑

k=m

ak (“Tail of the series”)
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Therefore in the end, we get a powerful criterion for testing if a series
converges, called the:

Cauchy Criterion:

A series
∑∞

n=1 an converges if and only if it satisfies the Cauchy
criterion:

For all ϵ > 0 there is N such that, if n ≥ m > N , then∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ϵ

In other words, no matter how small the error, the tail
∑n

k=m ak of the
series (no matter how long) eventually becomes as small as we want.

Example: Since
∑∞

n=1
1
n2 converges, this means that (with ϵ = 0.0003),

no matter what tail
∑n

k=m
1
n2 we pick, that tail will always be < 0.0003

provided m,n are large enough.
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An example of such tail (with 3 terms) is:

102∑
k=100

1

k2
=

1

(100)2
+

1

(101)2
+

1

(102)2
≈ 0.000294 < 0.0003

But convergence means much more than that: Even with 5, 7, or 10, 000
terms, the tail will be < 0.0003.

4. The Divergence Test

Using the Cauchy criterion, we can prove the Divergence Test:

The Divergence Test:

If the series
∑

an converges, then the sequence an → 0

Or, equivalently, if an ↛ 0, then
∑

an cannot converge.

This makes intuitively sense, because suppose for example that an → 2,
then in the series

∑
an, we’re eventually adding up terms that are close

to 2, so
∑

an would eventually look like 2 + 2 + 2 + · · · = 2

Example 7:

Does the following series converge?

∞∑
n=1

(
3− 2

n

)

No because 3− 2
n → 3 ̸= 0
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Example 8:

Does the following series converge?

∞∑
n=1

(−1)n = −1 + 1− 1 + 1 . . .

No because limn→∞(−1)n does not exist, so it certainly does not con-
verge to 0.

Proof: Let ϵ > 0 be given, then, since
∑

an converges, by the Cauchy
criterion, there is N such that if n ≥ m > N , then∣∣∣∣∣

n∑
k=m

ak

∣∣∣∣∣ < ϵ

Upshot: Since the above is true for all m and n (with n ≥ m > N),
it is in particular true for n = m (> N)

With the same N , if m > N , then you get:∣∣∣∣∣
m∑

k=m

ak

∣∣∣∣∣ = |am| < ϵ

Therefore, for all ϵ > 0 there isN such that ifm > N , then |am − 0| < ϵ

Therefore, by definition, am → 0 as m → ∞ □

Notice how elegant this proof is! This is why we worked so hard to
define the Cauchy criterion
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5. The Comparison Tests

Video: The Comparison Test

Let’s now prove the comparison test(s). Intuitively, it says that if a
series is less than a convergent series, then it converges.

Comparison Test 1:

Suppose an ≥ 0 for all n. If |bn| ≤ an for all n and
∑

an converges,
then

∑
bn converges

It’s kind of like a squeeze theorem, but for series, since bn is squeezed
between −an and an

Intuitively, think of it as: If bn ≤ an and
∑

an < ∞, then
∑

bn < ∞

https://youtu.be/02HRdxNZ8Kw
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Example 9:

Does the following series converge?

∞∑
n=1

1

n2 + 1

Let bn = 1
n2+1 then:

|bn| =
1

n2 + 1
≤ 1

n2
=: an

But since
∑

an =
∑

1
n2 converges, then

∑
bn =

∑
1

n2+1 converges.

Proof: Let ϵ > 0 be given. Then, by the Cauchy criterion for
∑

an,
there is N such that if n ≥ m > N , then∣∣∣∣∣

n∑
k=m

ak

∣∣∣∣∣ =
n∑

k=m

ak < ϵ

(Here we used that ak ≥ 0 by assumption)

But then, with the same N , if n ≥ m > N , then∣∣∣∣∣
n∑

k=m

bk

∣∣∣∣∣ ≤
n∑

k=m

|bk| ≤
n∑

k=m

ak < ϵ

Where we used the triangle inequality and the fact that |bk| ≤ ak.

Therefore, by the Cauchy criterion for (bn),
∑

bn converges □

Here’s a neat application of the convergence test:
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Definition:∑
an converges absolutely if

∑
|an| converges

Example 10:

∞∑
n=1

(−1)n

n2
= −1 +

1

4
− 1

9
+

1

16
. . .

Converges absolutely since

∞∑
n=1

∣∣∣∣(−1)n

n2

∣∣∣∣ = ∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+ . . . converges

Corollary:

Absolutely convergent series converge

Proof: This just follows because |an| ≤ |an| so since
∑

|an| converges,
by comparison,

∑
an converges as well. □

There’s also a simple analog of the comparison test, but for divergent
series: If a series is larger than one that goes to ∞, then that series
also goes to ∞:

Comparison Test 2:

Suppose bn ≥ an for all n and
∑

n an = ∞, then
∑

n bn = ∞
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Proof: Let sn =
∑n

k=1 ak and tn =
∑n

k=1 bk be the partial sums of
(an) and (bn) respectively.

Then, since by assumption bk ≥ ak for all k, we get

n∑
k=1

bk ≥
n∑

k=1

ak ⇒ tn ≥ sn

Since
∑

an = ∞, by definition we must have sn → ∞.

Therefore, by comparison (of limits), we must have tn → ∞, that is∑
bn → ∞. □
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Example 11:

Does the following series converge?

∞∑
n=1

n

n2 + 3

Note: This looks a lot like
∑

n
n2 =

∑
1
n which diverges.

Notice that 3 ≤ 3n2, therefore:

bn =:
n

n2 + 3
≥ n

n2 + 3n2
=

n

4n2
=

1

4n
=: an

Hence bn ≥ an for all n. But since

∞∑
n=1

an =
∞∑
n=1

1

4n
=

1

4

∞∑
n=1

1

n
= ∞

By comparison we get

∞∑
n=1

bn =
∞∑
n=1

n

n2 + 3
= ∞
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