LECTURE 13: TANGENT PLANES

1. Tangent Planes

Video: Tangent Planes

Just like derivatives lead to tangent lines, partial derivatives lead to tangent planes.

Example 1:

Find the equation of the tangent plane of $f(x, y)=\sqrt{x y}$ at $(1,4)$

Date: Monday, September 27, 2021.

Tangent Plane

The equation of the tangent plane of f at $(1,4)$ is:

$$
z-f(1,4)=f_{x}(1,4)(x-1)+f_{y}(1,4)(y-4)
$$

(Just the point-slope formula, but with two variables. Intuitively, this makes sense if you think of f_{x} and f_{y} as the slopes in the x and y directions)

$$
\begin{gathered}
f(1,4)=\sqrt{(1)(4)}=2 \\
f_{x}(x, y)=(\sqrt{x y})_{x}=\left(\frac{1}{2 \sqrt{x y}}\right) y \Rightarrow f_{x}(1,4)=\left(\frac{1}{2 \sqrt{4}}\right) 4=1 \\
f_{y}(x, y)=(\sqrt{x y})_{y}=\left(\frac{1}{2 \sqrt{x y}}\right) x \Rightarrow f_{y}(1,4)=\left(\frac{1}{2 \sqrt{4}}\right) 1=\frac{1}{4}
\end{gathered}
$$

$$
\text { Answer: } z-2=1(x-1)+\frac{1}{4}(y-4)
$$

2. Linear Approximations

Video: Linear Approximations and Differentials
Why care about tangent planes? Because they allow us to approximate complicated values of f

Example 2:

Let $f(x, y)=\sqrt{x y}$
(a) Find the linear approximation $L(x, y)$ to f at $(1,4)$

Profile View:

Linear Approximation:

$$
\begin{aligned}
L(x, y) & =\text { Equation of tangent plane at }(1,4) \\
& =f(1,4)+f_{x}(1,4)(x-1)+f_{y}(1,4)(y-4)
\end{aligned}
$$

(Compare to $L(x)=f(a)+f^{\prime}(a)(x-a)$ in Calculus I)
Hence, using the previous example, we get:

$$
L(x, y)=2+(x-1)+\frac{1}{4}(y-4)
$$

(b) Use $L(x, y)$ to approximate $\sqrt{(1.01)(4.02)}$

Point: Near $(1,4)$, the tangent plane is a good approximation to f
Fact:
For (x, y) near $(1,4)$, we have $L(x, y) \approx f(x, y)$

$$
\begin{aligned}
\sqrt{(1.01)(4.04)} & =f(1.01,4.02) \\
& \approx L(1.01,4.02) \quad(\text { By Fact }) \\
& =2+(1.01-1)+\frac{1}{4}(4.02-4) \quad(\text { By }(\mathrm{a})) \\
& =2+0.01+\frac{1}{4}(0.02) \\
& =2+0.01+0.005 \\
& =2.015
\end{aligned}
$$

Note: Compare to the actual value of $2.014994 \ldots$

Example 3:

Approximate $\ln (0.97) e^{0.02}$
(1)

$$
f(x, y)=\ln (x) e^{y} \quad \text { Point: }(1,0)
$$

(2)

$$
L(x, y)=f(1,0)+f_{x}(1,0)(x-1)+f_{y}(1,0)(y-0)
$$

(3)

$$
\begin{aligned}
f(1,0) & =\ln (1) e^{0}=0 \\
f_{x}(x, y) & =\left(\frac{1}{x}\right) e^{y} \Rightarrow f_{x}(1,0)=\left(\frac{1}{1}\right) e^{0}=1 \\
f_{y}(x, y) & =\ln (x) e^{y} \Rightarrow f_{y}(1,0)=\ln (1) e^{0}=0
\end{aligned}
$$

Therefore:

$$
L(x, y)=0+1(x-1)+0(y-0)=x-1
$$

(4) Hence:

$$
\begin{aligned}
\ln (0.97) e^{0.02} & =f(0.97,0.02) \\
& \approx L(0.97,0.02) \\
& =0.97-1 \\
& =-0.03
\end{aligned}
$$

(Compare to the Actual Value of $-0.0311 \cdots$)

3. Differentials

Now let's talk about differentials, which is just the different side of the same coin!

Example 4:

Use differentials to approximate $\sqrt{(1.01)(4.02)}$
(Same example as above, just to show you that we get the same answer)
$f(x, y)=\sqrt{x y}$, Point $=(1,4)$
It's literally the same thing as linear approximations, but with different notation. Here instead of talking about closeness, we talk about small errors.

Profile View:

Notation

$$
\begin{aligned}
d x & =\Delta x=1.01-1=0.01 \quad \text { (Error in } x) \\
d y & =\Delta y=4.02-4=0.02 \quad \text { (Error in } y) \\
\Delta z & =f(1.01,4.02)-f(1,4)=\sqrt{(1.01)(4.02)}-2
\end{aligned}
$$

(Actual Error in z)

Definition

$$
d z=f_{x}(1,4) d x+f_{y}(1,4) d y \quad \text { (Calculus Error) }
$$

(Compare to $d y=f^{\prime}(x) d x$ in Calculus I, it's the error by using L instead of f)

$$
d z=1(0.01)+\frac{1}{4}(0.02)=0.015
$$

Fact:

For (x, y) near $(1,4)$, we have $\Delta z \approx d z$
Therefore:

$$
\begin{aligned}
\Delta z & \approx d z \\
\sqrt{(1.01)(4.02)}-2 & \approx 0.015 \\
\sqrt{(1.01)(4.02)} & \approx 2.015 \quad \text { (Same answer as above) }
\end{aligned}
$$

Example 5:

Use differentials to approximate $\ln (0.97) e^{0.02}$

$$
f(x, y)=\ln (x) e^{y} \quad \text { Point: }(1,0)
$$

$$
\begin{aligned}
d z & =f_{x}(1,0) d x+f_{y}(1,0) d y \\
& =1(0.97-1)+0(0.02-0) \quad \text { (From above) } \\
& =-0.03
\end{aligned}
$$

Then $\Delta z \approx d z$ gives:

$$
\begin{array}{r}
f(0.97,0.02)-f(1,0) \approx-0.03 \\
\ln (0.97) e^{0.02}-\underbrace{\ln (1) e^{0}}_{0} \approx-0.03 \\
\ln (0.97) e^{0.02} \approx-0.03
\end{array}
$$

4. Application

As an application, let's try to measure the error in calculating the volume of a cylinder. This is very useful in engineering, where calculations are rarely exact.

Example 6:

Estimate the error in calculating the volume of a cylinder with radius $r=2$ and height $h=3$, where the error in measuring the radius is $d r=0.1$ and the error in measuring the height is $d h=0.2$

STEP 1: Prep Work

$$
\begin{array}{rlrl}
V & =V(r, h) & =\pi r^{2} h \\
r & =2, & d r & =0.1 \\
h & =3, & d h & =0.2
\end{array}
$$

STEP 2:

$$
\begin{aligned}
\text { Actual Error } & =\Delta V \\
\text { Calculus Error } & =d V=V_{r}(2,3) d r+V_{h}(2,3) d h
\end{aligned}
$$

$$
\begin{aligned}
& V_{r}(r, h)=\pi(2 r) h=2 \pi r h \\
& V_{r}(2,3)=2 \pi(2)(3)=12 \pi \\
& V_{h}(r, h)=\pi r^{2} \\
& V_{h}(2,3)=\pi(2)^{2}=4 \pi
\end{aligned}
$$

Therefore:

$$
d V=(12 \pi)(0.1)+(4 \pi)(0.2)=1.2 \pi+0.8 \pi=2 \pi
$$

(3) The error in measurement is $\Delta V \approx d V=2 \pi$.

This tells you that if the measures of r and h are off by 0.1 and 0.2 , the measure of the volume is off by about 2π, which is huge!

