LECTURE 13: DIRECTIONAL DERIVATIVES

1. DIRECTIONAL DERIVATIVES

Let f:R™ — R, so f is a scalar function.

Recall:

This is the limit in the e; direction. But what about arbitrary direc-
tions u?

Definition: If u is a (unit) vector, then the directional derivative
of f at x along u is

(D, f) () = lim 2210 = /(@)

t—0 t
(There is nothing special today about u being a unit vector, it’s just

so that people agree on the same answer)

It turns out we can write D, f more compactly, in terms of the partial
derivatives

Definition: The gradient of f is
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This is just the vector of the partial derivatives

Fact:
D, f(z) = (Vf)(z) u

Proof: Let v(t) = x4 tu (segment that starts at x, in the direction of
u), and let g(t) = f(7(t))

Then by the Chain Rule,

/

— [ %j(y(t)) } v;(t) (v; are the components of v')

j=1

=(VLH(v (1) - (1)
=(Vf)(z+tu) - v (Definition of ~y(¢))

In particular, if £ = 0 then we get
g'(0) = (Vf)(z) - u

And therefore:

2. MEAN VALUE THEOREM

Question: Is the Mean-Value Theorem true in R"? Do we have



LECTURE 13: DIRECTIONAL DERIVATIVES 3

f(b) = fla) = f(c) (b —a)

For some c¢ in the segment between a and b7
Unfortunately the answer is NO.
Example: Define f : R — R? by

f(t) = (cos(t),sin(t))

Then f(27)—f(0) = (1,0)—(1,0) = (0,0) # f'(¢) (2r — 0) for any ¢
Since f'(c) = (— cos(c),sin(c)) # (0,0)

That said, we do have the following analog of the MV'T, which is good
enough for our purposes:

Theorem: Suppose f : R” — R™ is differentiable and there is M > 0
such that for all x
IF (@) < M

Then for all a and b we have |f(b) — f(a)] < M |b— a|

Corollary: If f/(x) =0 for all z, then f is constant.

Why? Follows from the above with M =0

Proof of MVT:
STEP 1: Fix a and b and define the segment from a to b:

) =1 -ta+th (0<t<1)
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Let g(t) = f(~(t)) (Collects f along the segment)
Then ¢'(t) = f'(v(t))7'(t) = f(v(t))(b — a) (Definition of 7')
Hence [lg"(t)[| < Ilf"(v(@))(b = a)l = I/ (v(@)II b= a| < M|b—q]

Notice the above is valid for all ¢.
Claim: There is some ¢ with |g(1) — g(0)| < ||¢'(¢)]|
Then we would be done because

1f(b) = f(@)] = [f(v(1) = fF(v(0)] = [9(1) — g(0)] e lg' ()| < M [b—al v
STEP 2: Proof of Claim:

Let ¢(t) = (g(1) — g(0)) - g(t) (Scalar function)
Then by the single-variable MVT applied to ¢ there is ¢ in (0, 1) with

3(1) — ¢(0) = ¢'(c) "= (g(1) — 9(0)) - ¢'(c)
But also ¢(1) — ¢(0) "= (g(1)

—3(0)) - g(1) — (g(1) — ¢(0)) - g(0)
= (9(1) — g(0)) - (g(1) — g(0))
=1g(1) — g(0)[?

Hence [g(1) — g(0)" = ¢(1)~6(0) = (9(1)~9(0)) - ¢'(c) <
Dividing both sides by |g(1) — g(0)| we get |g(1) — ¢g(0)| <
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