LECTURE 13: DIRECTIONAL DERIVATIVES

1. Directional Derivatives

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, so f is a scalar function.

Recall:

$$
\frac{\partial f}{\partial x_{j}}(x)=\lim _{t \rightarrow 0} \frac{f\left(x+t e_{j}\right)-f(x)}{t}
$$

This is the limit in the e_{j} direction. But what about arbitrary directions u ?

Definition: If u is a (unit) vector, then the directional derivative of f at x along u is

$$
\left(D_{u} f\right)(x)=\lim _{t \rightarrow 0} \frac{f(x+t u)-f(x)}{t}
$$

(There is nothing special today about u being a unit vector, it's just so that people agree on the same answer)

It turns out we can write $D_{u} f$ more compactly, in terms of the partial derivatives

Definition: The gradient of f is

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

Date: Monday, July 25, 2022.

This is just the vector of the partial derivatives

Fact:

$$
D_{u} f(x)=(\nabla f)(x) \cdot u
$$

Proof: Let $\gamma(t)=x+t u$ (segment that starts at x, in the direction of u), and let $g(t)=f(\gamma(t))$

Then by the Chain Rule,

$$
\begin{aligned}
g^{\prime}(t) & =f^{\prime}(\gamma(t)) \gamma^{\prime}(t) \\
& =\left[\frac{\partial f}{\partial x_{j}}(\gamma(t))\right]\left[\gamma_{j}^{\prime}(t)\right] \quad\left(\gamma_{j}^{\prime} \text { are the components of } \gamma^{\prime}\right) \\
& =\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\gamma(t)) \gamma_{j}^{\prime}(t) \\
& =(\nabla f)(\gamma(t)) \cdot \gamma^{\prime}(t) \\
& =(\nabla f)(x+t u) \cdot u \quad(\text { Definition of } \gamma(t))
\end{aligned}
$$

In particular, if $t=0$ then we get

$$
g^{\prime}(0)=(\nabla f)(x) \cdot u
$$

And therefore:

$$
\begin{array}{r}
\left(D_{u} f\right)(x)=\lim _{t \rightarrow 0} \frac{f(x+t u)-f(x)}{t}=\lim _{t \rightarrow 0} \frac{f(\gamma(t))-f(\gamma(0))}{t}=\lim _{t \rightarrow 0} \frac{g(t)-g(0)}{t} \\
=g^{\prime}(0)=(\nabla f)(x) \cdot u
\end{array}
$$

2. Mean Value Theorem

Question: Is the Mean-Value Theorem true in \mathbb{R}^{n} ? Do we have

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

For some c in the segment between a and b ?
Unfortunately the answer is NO.
Example: Define $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by

$$
f(t)=(\cos (t), \sin (t))
$$

Then $f(2 \pi)-f(0)=(1,0)-(1,0)=(0,0) \neq f^{\prime}(c)(2 \pi-0)$ for any c
Since $f^{\prime}(c)=(-\cos (c), \sin (c)) \neq(0,0)$
That said, we do have the following analog of the MVT, which is good enough for our purposes:

Theorem: Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable and there is $M \geq 0$ such that for all x

$$
\left\|f^{\prime}(x)\right\| \leq M
$$

Then for all a and b we have $|f(b)-f(a)| \leq M|b-a|$

Corollary: If $f^{\prime}(x)=0$ for all x, then f is constant.
Why? Follows from the above with $M=0$

Proof of MVT:

STEP 1: Fix a and b and define the segment from a to b :

$$
\gamma(t)=(1-t) a+t b \quad(0 \leq t \leq 1)
$$

Let $g(t)=f(\gamma(t))$ (Collects f along the segment)
Then $g^{\prime}(t)=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)=f^{\prime}(\gamma(t))(b-a) \quad$ (Definition of $\left.\gamma^{\prime}\right)$
Hence $\left\|g^{\prime}(t)\right\| \leq\left\|f^{\prime}(\gamma(t))(b-a)\right\|=\left\|f^{\prime}(\gamma(t))\right\||b-a| \leq M|b-a|$
Notice the above is valid for all t.
Claim: There is some c with $|g(1)-g(0)| \leq\left\|g^{\prime}(c)\right\|$
Then we would be done because
$|f(b)-f(a)|=|f(\gamma(1))-f(\gamma(0))|=|g(1)-g(0)| \stackrel{\text { Claim }}{\leq}\left\|g^{\prime}(c)\right\| \leq M|b-a| \checkmark$

STEP 2: Proof of Claim:

$$
\text { Let } \phi(t)=(g(1)-g(0)) \cdot g(t) \quad \text { (Scalar function) }
$$

Then by the single-variable MVT applied to ϕ there is c in $(0,1)$ with

$$
\phi(1)-\phi(0)=\phi^{\prime}(c) \stackrel{\text { DEF }}{=}(g(1)-g(0)) \cdot g^{\prime}(c)
$$

But also $\phi(1)-\phi(0) \stackrel{\text { DEF }}{=}(g(1)-g(0)) \cdot g(1)-(g(1)-g(0)) \cdot g(0)$
$=(g(1)-g(0)) \cdot(g(1)-g(0))$
$=|g(1)-g(0)|^{2}$
Hence $|g(1)-g(0)|^{2}=\phi(1)-\phi(0)=(g(1)-g(0)) \cdot g^{\prime}(c) \stackrel{\text { C-S }}{\leq}|g(1)-g(0)|\left\|g^{\prime}(c)\right\|$
Dividing both sides by $|g(1)-g(0)|$ we get $|g(1)-g(0)| \leq\left\|g^{\prime}(c)\right\|$

