LECTURE 14: THE CHEN LU

Welcome to the most important differentiation rule of all time, the Chain Rule, or, as I like to call it, the Chen Lu!!!

1. The Chen Lu

Example 1: (Motivation)

Find the derivative of $f(t)=\sin \left(t^{3}\right)$

$$
\begin{aligned}
f^{\prime}(t) & =\cos \left(t^{3}\right)\left(3 t^{2}\right) \\
\frac{d f}{d t} & =\left(\frac{d f}{d x}\right)\left(\frac{d x}{d t}\right) \quad\left(\text { Where } x=t^{3}\right)
\end{aligned}
$$

Here it's the same formula, except we add a y-term:

Example 2:

$$
\left\{\begin{array}{c}
\text { Find } \frac{d f}{d t}, \text { where } \\
f(x, y)=x^{3}+y^{4} \\
x=t^{2}-2 \\
y=t^{3}+1
\end{array}\right.
$$

In other words, find the derivative of $\left(t^{2}-2\right)^{3}+\left(t^{3}+1\right)^{4}$. You could do it directly, but this way is more elegant and useful for applications.

Date: Wednesday, September 29, 2021.

The Chen Lu:

$$
\frac{d f}{d t}=\left(\frac{\partial f}{\partial x}\right)\left(\frac{d x}{d t}\right)+\underbrace{\left(\frac{\partial f}{\partial y}\right)\left(\frac{d y}{d t}\right)}_{\text {New Term }}
$$

You can visualize it with the following diagram:

Here we get:

$$
\begin{aligned}
\frac{d f}{d t} & =\left(\frac{\partial f}{\partial x}\right)\left(\frac{d x}{d t}\right)+\left(\frac{\partial f}{\partial y}\right)\left(\frac{d y}{d t}\right) \\
& =\left(x^{3}+y^{4}\right)_{x}\left(t^{2}-2\right)^{\prime}+\left(x^{3}+y^{4}\right)_{y}\left(t^{3}+1\right)^{\prime} \\
& =\left(3 x^{2}\right)(2 t)+\left(4 y^{3}\right)\left(3 t^{2}\right) \\
& =3\left(t^{2}-2\right)^{2}(2 t)+4\left(t^{3}+1\right)^{3}\left(3 t^{2}\right) \quad\left(\text { Use } x=t^{2}-2\right) \\
& =6 t\left(t^{2}-2\right)^{2}+12 t^{2}\left(t^{3}+1\right)^{3}
\end{aligned}
$$

Notice the pattern: First differentiate the outside function $x^{3}+y^{4}$ and then differentiate the inside function $t^{2}-2$ (and repeat for y)

Example 3:

$$
\left\{\begin{aligned}
& \text { Find } \frac{d z}{d t} \\
& z=\ln \left(x^{2}+y^{2}\right) \\
& x=e^{t} \\
& y=t^{2}
\end{aligned}\right.
$$

Same thing, except we use z instead of f :

$$
\begin{aligned}
\frac{d z}{d t} & =\left(\frac{\partial z}{\partial x}\right)\left(\frac{d x}{d t}\right)+\left(\frac{\partial z}{\partial y}\right)\left(\frac{d y}{d t}\right) \\
& =\left(\ln \left(x^{2}+y^{2}\right)\right)_{x}\left(e^{t}\right)^{\prime}+\left(\ln \left(x^{2}+y^{2}\right)\right)_{y}\left(t^{2}\right)^{\prime} \\
& =\left(\frac{2 x}{x^{2}+y^{2}}\right) e^{t}+\left(\frac{2 y}{x^{2}+y^{2}}\right)(2 t) \\
& =\left(\frac{2 e^{t}}{\left(e^{t}\right)^{2}+\left(t^{2}\right)^{2}}\right) e^{t}+\left(\frac{2 t^{2}}{\left(e^{t}\right)^{2}+\left(t^{2}\right)^{2}}\right)(2 t) \\
& =\frac{2 e^{2 t}+4 t^{3}}{e^{2 t}+t^{4}}
\end{aligned}
$$

What if we have 3 or more variables? No problem!

Example 4:

$$
\left\{\begin{array}{c}
\frac{d f}{d t} \text { at } t=0 \\
f(x, y, z)=x e^{y^{2} z^{3}} \\
x=t^{2} \\
y=1-t^{3} \\
z=1+2 t
\end{array}\right.
$$

Same idea as before, but this time we add a z :

$$
\begin{align*}
\frac{d f}{d t} & =\left(\frac{\partial f}{\partial x}\right)\left(\frac{d x}{d t}\right)+\left(\frac{\partial f}{\partial y}\right)\left(\frac{d y}{d t}\right)+\left(\frac{\partial f}{\partial z}\right)\left(\frac{d z}{d t}\right) \\
& =\left(e^{y^{2} z^{3}}\right)(2 t)+\left(x(2 y) z^{3} e^{y^{2} z^{3}}\right)\left(-3 t^{2}\right)+\left(x y^{2}\left(3 z^{2}\right) e^{y^{2} z^{3}}\right) \tag{2}
\end{align*}
$$

Now at $t=0$ we have:

$$
\left\{\begin{array}{l}
x=(0)^{2}=0 \\
y=1-(0)^{3}=1 \\
z=1+2(0)=1
\end{array}\right.
$$

And so: $\quad \frac{d f}{d t}=e^{1}(0)+(0)(2)(1) e^{1}(-0)+0(1)(3) e^{1}(2)=0$

2. Two or more variables

What if x and y depend on two variables t and s ? Also not a problem!

Example 5:

$$
\left\{\begin{array}{l}
\text { Find } \frac{\partial f}{\partial s} \text { and } \frac{\partial f}{\partial t} \\
f(x, y)=x \sin (y) \\
x(s, t)=s^{2} t \\
y(s, t)=s^{3}
\end{array}\right.
$$

In other words, we want to find the partial derivatives of $\left(s^{2} t\right) \sin \left(s^{3}\right)$
Same thing as before, except now you have to follow the arrows (kind of like a chain \odot)

The Chen Lu:

$$
\begin{aligned}
& \frac{\partial f}{\partial s}=\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial x}{\partial s}\right)+\left(\frac{\partial f}{\partial y}\right)\left(\frac{\partial y}{\partial s}\right) \\
& \frac{\partial f}{\partial t}=\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial x}{\partial t}\right)+\left(\frac{\partial f}{\partial y}\right)\left(\frac{\partial y}{\partial t}\right)
\end{aligned}
$$

Here:

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial x}{\partial s}\right)+\left(\frac{\partial f}{\partial y}\right)\left(\frac{\partial y}{\partial s}\right) \\
& =(x \sin (y))_{x}\left(s^{2} t\right)_{s}+(x \sin (y))_{y}\left(s^{3}\right)_{s} \\
& =\sin (y)(2 s t)+(x \cos (y))\left(3 s^{2}\right) \\
& =\sin \left(s^{3}\right)(2 s t)+s^{2} t \cos \left(s^{3}\right)\left(3 s^{2}\right)
\end{aligned}
$$

$$
\frac{\partial f}{\partial t}=\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial x}{\partial t}\right)+\left(\frac{\partial f}{\partial y}\right)\left(\frac{\partial y}{\partial t}\right)
$$

$$
=(x \sin (y))_{x}\left(s^{2} t\right)_{t}+(x \sin (y))_{y}\left(s^{3}\right)_{t}
$$

$$
=\sin (y)\left(s^{2}\right)+(x \cos (y)) 0
$$

$$
=\sin \left(s^{3}\right) s^{2}
$$

Example 6: (Radial Derivative, extra practice)

$$
\left\{\begin{aligned}
\text { Find } & \frac{\partial f}{\partial r} \\
f(x, y) & =\ln (x-y) \\
x & =r \cos (\theta) \\
y & =r \sin (\theta)
\end{aligned}\right.
$$

$$
\begin{aligned}
\frac{\partial f}{\partial r} & =\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial x}{\partial r}\right)+\left(\frac{\partial f}{\partial y}\right)\left(\frac{\partial y}{\partial r}\right) \\
& =(\ln (x-y))_{x}(r \cos (\theta))_{r}+(\ln (x-y))_{y}(r \sin (\theta))_{r} \\
& =\frac{1}{x-y} \cos (\theta)-\frac{1}{x-y} \sin (\theta) \\
& =\frac{\cos (\theta)-\sin (\theta)}{x-y} \\
& =\frac{\cos (\theta)-\sin (\theta)}{r \cos (\theta)-r \sin (\theta)} \\
& =\frac{1}{r}
\end{aligned}
$$

3. Implicit Differentiation (AGain)

Let's revisit a problem we did in the previous section:

Example 7:

Find $\frac{\partial z}{\partial x}$ where:

$$
x^{3}+y^{3}+z^{3}=6 x y z
$$

Here $z=z(x, y)$ is implicitly a function of x and y, so derivatives like $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ make sense.

We have done this example before (and it was a pain), but here we get a much easier formula:

STEP 1: Rewrite the above as:

$$
\underbrace{x^{3}+y^{3}+z^{3}-6 x y z}_{F(x, y, z)}=0
$$

Then this equation is of the form $F(x, y, z)=0$, where both x and z depend on x.

STEP 2: Differentiate this with respect to x :

$$
\begin{aligned}
(F(x, y, z))_{x} & =0 \\
\frac{\partial F}{\partial x}\left(\frac{\partial x}{\partial x}\right)+\frac{\partial F}{\partial z}\left(\frac{\partial z}{\partial x}\right) & =0 \\
F_{x}+F_{z}\left(\frac{\partial z}{\partial x}\right) & =0 \\
F_{z}\left(\frac{\partial z}{\partial x}\right) & =-F_{x} \\
\frac{\partial z}{\partial x} & =-\frac{F_{x}}{F_{z}}
\end{aligned}
$$

Fact:

If $F(x, y, z)=0$, then:

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}
$$

Mnemonic: In $\frac{\partial z}{\partial x}$, switch the z and x and add a minus sign to get $-\frac{F_{x}}{F_{z}}$
Note: Memorize only if you find this useful. You can always use the method from partial derivatives section to do this.

Here, we get:

$$
\frac{\partial z}{\partial x}=-\frac{\left(x^{3}+y^{3}+z^{3}-6 x y z\right)_{x}}{\left(x^{3}+y^{3}+z^{3}-6 x y z\right)_{z}}=-\left(\frac{3 x^{2}-6 y z}{3 z^{2}-6 x y}\right)=\frac{6 y z-3 x^{2}}{3 z^{2}-6 x y}
$$

(Same answer as in the partial derivatives lecture)
Similarly:

$$
\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{\left(x^{3}+y^{3}+z^{3}-6 x y z\right)_{y}}{\left(x^{3}+y^{3}+z^{3}-6 x y z\right)_{z}}=-\left(\frac{3 y^{2}-6 x z}{3 z^{2}-6 x y}\right)=\frac{6 x z-3 y^{2}}{3 z^{2}-6 x y}
$$

Example 8:

Find $\frac{\partial z}{\partial y}$ where:

$$
y z+x \ln (y)=z^{2}+1
$$

$$
\begin{gathered}
F(x, y, z)=y z+x \ln (y)-z^{2}-1(=0) \\
\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{\left(y z+x \ln (y)-z^{2}-1\right)_{y}}{\left(y z+x \ln (y)-z^{2}-1\right)_{z}}=-\left(\frac{z+\frac{x}{y}}{y-2 z}\right)
\end{gathered}
$$

4. Higher Order Derivatives

Example 9: (Higher Order Derivatives)

$$
\left\{\begin{array}{c}
\text { Find } f_{t s} \\
f(x, y)=\sin (x) \cos (y) \\
x=t+s \\
y=t-s
\end{array}\right.
$$

$$
\begin{aligned}
\frac{\partial f}{\partial t} & =\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial x}{\partial t}\right)+\left(\frac{\partial f}{\partial y}\right)\left(\frac{\partial y}{\partial t}\right) \\
& =(\sin (x) \cos (y))_{x}(t+s)_{t}+(\sin (x) \cos (y))_{y}(t-s)_{t} \\
& =\cos (x) \cos (y)-\sin (x) \sin (y) \\
& =\cos (x+y)
\end{aligned}
$$

$$
f_{t s}=\left(f_{t}\right)_{s}=\frac{\partial f_{t}}{\partial s}
$$

$$
=\left(\frac{\partial f_{t}}{\partial x}\right)\left(\frac{\partial x}{\partial s}\right)+\left(\frac{\partial f_{t}}{\partial y}\right)\left(\frac{\partial y}{\partial s}\right)
$$

$$
=(\cos (x+y))_{x}(t+s)_{s}+(\cos (x+y))_{t}(t-s)_{s}
$$

$$
=-\sin (x+y)(1)-\sin (x+y)(-1)
$$

$$
=0
$$

