
LECTURE 14: SERIES (II)

Let’s continue our series extravaganza! Today’s goal is to prove the
celebrated Ratio, Root, and Integral Tests

1. The Root Test

Video: Root Test Proof

Example 1:

Use the root test to figure out if the following series converges:

∞∑
n=0

n

3n

Let an = n
3n , then the root test tells you to look at:

|an|
1
n =

∣∣∣ n
3n

∣∣∣ 1
n

=
n

1
n

3n(
1
n)

=
n

1
n

3

n→∞→ 1

3
= α < 1

Therefore
∑

an converges absolutely.

Since limn→∞ |an|
1
n doesn’t always exist, we need to replace this with

lim supn→∞ |an|
1
n (which always exists). We then obtain the root test:

Date: Thursday, October 14, 2021.
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https://youtu.be/iZvb-r6gzZw
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Root Test

Consider
∑

an and let

α = lim sup
n→∞

|an|
1
n

(1) If α < 1, then
∑

an converges absolutely (that is
∑

|an|
converges)

(2) If α > 1, then
∑

an diverges

(3) If α = 1, then the root test is inconclusive, meaning that
you’d have to use another test

Proof of (1): (α < 1 ⇒ converges absolutely)

Main Idea: Since lim supn→∞ |an|
1
n = α < 1, then for large n we have

|an|
1
n ≤ α. So |an| ≤ αn and therefore

∑
|an| ≤

∑
αn, which is a

geometric series that converges, since α < 1.

We now need to make this precise:

Since α < 1, let ϵ > 0 be such that α < α + ϵ < 1 (need some wiggle
room between α and 1)

By definition of lim sup, we have

lim sup
n→∞

|an|
1
n = lim

N→∞
sup

{
|an|

1
n | n > N

}
= α
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Hence, by definition of a limit, there is N1 such that if N > N1, then∣∣∣sup{|an| 1n | n > N
}
− α

∣∣∣ <ϵ

⇒ sup
{
|an|

1
n | n > N

}
− α <ϵ

⇒ sup
{
|an|

1
n | n > N

}
<α + ϵ

But then, by definition of sup (think max), for all n > N , we have:

|an|
1
n < α+ ϵ ⇒ |an| < (α + ϵ)n

And, in particular:

∞∑
n=N+1

|an| ≤
∞∑

n=N+1

(α + ϵ)n =
∞∑
n=1

rn

Where r = α + ϵ < 1. But the latter is just a geometric series with
|r| < 1 and therefore converges. Hence, by the comparison test,

∞∑
n=N+1

|an| converges
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And so, ignoring the first couple of terms,
∑

an converges absolutely✓

Proof of (2): (α > 1 ⇒ diverges)

Even easier! Remember that for any sequence (sn), there is a subse-
quence (snk

) converging to lim supn→∞ sn.

Therefore here there is a subsequence |ank
|

1
nk of |an|

1
n converging to

lim supn→∞ |an|
1
n = α > 1

But this means that for all k large enough, we must have

|ank
|

1
nk > 1 ⇒ |ank

| > 1nk = 1

But since |ank
| > 1 for every k, we cannot have an → 0. Therefore

an ↛ 0, and so
∑

an diverges by the divergence test. ✓

Proof of (3): All we need to do is find two series with α = 1, one
which converges absolutely, and the other one which diverges.

Consider
∑∞

n=1
1
n , which diverges since it’s a 1−series, and

|an|
1
n =

(
1

n

) 1
n

=
1

n
1
n

→ 1

1
= 1

So α = lim supn→∞ |an|
1
n = 1.

Now consider
∑∞

n=1
1
n2 , which converges absolutely since it’s a 2−series,

and

|an|
1
n =

(
1

n2

) 1
n

=
1

n
2
n

=
1(

n
1
n

)2 → 1

1
= 1
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So α = lim supn→∞ |an|
1
n = 1 □

2. The Ratio Test

Video: Ratio Test Proof

On the other side of the spectrum is the ratio test:

Example 2:

Use the ratio test to figure out if the following series converges:

∞∑
n=0

n

3n

This time look at ratios of successive terms:

∣∣∣∣an+1

an

∣∣∣∣ = n+1
3n+1

n
3n

=

(
3n

3n+1

)(
n+ 1

n

)
=

(
1

3

)(
n+ 1

n

)
→ 1

3
< 1

Therefore the series converges absolutely.

Note: The ratio test is excellent for series involving n!, like
∑

1
n!

Here again, since limn→∞

∣∣∣an+1

an

∣∣∣ might not exist, we need to replace the

limit with lim sup and lim inf:

https://youtu.be/yV04ZawxmKI
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Ratio Test:

Consider
∑

an. Then:

(1) If lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1, then
∑

an converges absolutely.

(2) If lim infn→∞

∣∣∣an+1

an

∣∣∣ > 1, then
∑

an diverges

(3) If lim infn→∞

∣∣∣an+1

an

∣∣∣ ≤ 1 ≤ lim supn→∞

∣∣∣an+1

an

∣∣∣, then the ratio

test is inconclusive.

Proof: Muuuuuch easier than the proof of the root test, since we’ve
already done the hard part in section 12 ,

Recall: Pre-Ratio Test

lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ≤ lim inf
n→∞

|an|
1
n ≤ lim sup

n→∞
|an|

1
n ≤ lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣
(1) If lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1, then, in the above, we get
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lim sup
n→∞

|an|
1
n ≤ lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1

So α =: lim sup
n→∞

|an|
1
n < 1

And therefore by the root test,
∑

an converges absolutely ✓

(2) If lim infn→∞

∣∣∣an+1

an

∣∣∣ > 1, then, in the above, we get:

lim sup
n→∞

|an|
1
n ≥ lim inf

n→∞
|an|

1
n ≥ lim inf

n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1

So α =: lim sup
n→∞

|an|
1
n > 1

And hence by the root test,
∑

an diverges. ✓

(3) Finally, just as before, we need to find two series
∑

an with

lim infn→∞

∣∣∣an+1

an

∣∣∣ ≤ 1 ≤ lim supn→∞

∣∣∣an+1

an

∣∣∣, one of which being

divergent and the other one absolutely convergent.

On the one hand
∑

1
n , which is divergent, since it’s a 1−series,

then ∣∣∣∣an+1

an

∣∣∣∣ = 1
n+1
1
n

=
n

n+ 1
→ 1

Therefore lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 ≤ 1 ≤ 1 = lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣
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Now consider
∑

1
n2 , which is absolutely convergent, since it’s a

2−series, then

∣∣∣∣an+1

an

∣∣∣∣ = 1
(n+1)2

1
n2

=
n2

(n+ 1)2
=

(
n

n+ 1

)2

→ 1

Therefore lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 ≤ 1 ≤ 1 = lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ □

Summary:

The Root test is strictly better than the ratio test:

If
∑

an converges (or diverges) by the ratio test, then it converges
(or diverges) by the root test as well.

But there are examples of series (like the one below) which con-
verge (or diverge) by the root test, but for which the ratio test is
inconclusive.
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3. Root Test > Ratio Test

Video: Ratio Test Vs Root Test

As another illustration of why the root test is better than the ratio
test, consider the following:

Example 3:

Does the following series converge?

∞∑
n=0

2(−1)n−n = 2 +
1

4
+

1

2
+

1

16
+

1

8
+ . . .

This is what I like to call the stock market series, or the Not Stonks
series:

Let’s try to apply both the ratio test and the root test to this series,
in order to see who wins.

https://youtu.be/g9VquWf9xMI
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Ratio Test: ∣∣∣∣an+1

an

∣∣∣∣ =2(−1)n+1−(n+1)

2(−1)n−n

=2(−1)n+1−�n−1−(−1)n+�n

=2−(−1)n−(−1)n−1

=2−((−1)n+(−1)n+1)

=2−2(−1)n−1

=

(
1

8
, 2,

1

8
, 2,

1

8
, 2, . . .

)

Therefore lim infn→∞

∣∣∣an+1

an

∣∣∣ = 1
8 and lim supn→∞

∣∣∣an+1

an

∣∣∣ = 2 and so:

lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ≤ 1 ≤ lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣

So we are in the third case of the ratio test, and so the ratio test is
inconclusive.

Root Test:
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|an|
1
n =

(
2(−1)n−n

) 1
n

= 2

(
(−1)n

n

)
−1 → 20−1 = 2−1 =

1

2
< 1

( (−1)n

n → 0 follows from the squeeze theorem, since it is squeezed be-

tween − 1
n and 1

n)

Hence lim sup
n→∞

|an|
1
n =

1

2
< 1

And therefore by the root test,
∑

an converges absolutely.

4. Root Test Pitfall

Video: Root Test Pitfall

That said, don’t get too overexcited, the root test doesn’t always work.
In particular, don’t think that just because you see something to the
power of n, you have to apply the root test!

Example 4:

Does the following series converge?

∞∑
n=0

(
2

(−1)n − 3

)n

First try: Let’s try using the root test:

|an|
1
n =

∣∣∣∣ 2

(−1)n − 3

∣∣∣∣ = (
1,

1

2
, 1,

1

2
, . . .

)

https://youtu.be/27Opxu5rwSs
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α = lim sup
n→∞

|an|
1
n = 1

So the root test is inconclusive, and we’ll have to try another method.

Note: The ratio test would also be inconclusive (by the pre-ratio test),
so we’ll have to try to find another way of doing this:

Second try: Look at the sequence (an) itself!

an =

(
2

(−1)n − 3

)n

=

(
1,−1

2
, 1,−1

8
, 1,− 1

32
, 1,− 1

128
, 1, . . .

)

Notice that every other term of an is 1, hence an ↛ 0, and therefore∑
an diverges by the divergence test.
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5. Integral Test 1

Video: Integral Test 1

This final test is integral in our understanding of series! It basically
says that if an integral is ∞, then the corresponding series is ∞ as well.

Integral Test 1:

Suppose f(x) ≥ 0 is decreasing on [1,∞), then∫ ∞

1

f(x)dx = ∞ ⇒
∞∑
n=1

f(n) diverges

https://youtu.be/ao1bRzN0I1E
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Example 5:

Does the 1−series converge or diverge?

∞∑
n=1

1

n

Let f(x) = 1
x (so f(n) = 1

n), then∫ ∞

1

f(x)dx =

∫ ∞

1

1

x
dx = [ln(x)]∞1 = ln(∞)− ln(1) = ∞− 0 = ∞

(We’re being a bit hand-wavy here because we haven’t defined im-
proper integrals, but the result is still the same)

Therefore, by the integral test,
∑

1
n diverges.

Proof:

Note: To make things a bit easier to understand, we will do the proof
for f(x) = 1

x and show that
∑∞

n=1
1
n diverges. The exact same proof

works if you simply replace 1
x by f(x) (see Homework)

Consider the partial sums:

sn =
n∑

k=1

1

k
= 1 +

1

2
+

1

3
+ · · ·+ 1

n

Main Idea: Interpret the sum above in terms of areas of rectangles,
and compare it with the area under f , that is

∫∞
1

(
1
x

)
dx.
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Start with the rectangle with base [1, 2] and height f(1) = 1 (left end-
point), which has area 1× 1 = 1.

Then consider the rectangle with base [2, 3] and height f(2) = 1
2 , which

has area 1× 1
2 =

1
2

Continue that way until you have the rectangle with base [n, n+1] and
height 1

n , which has area 1
n

Then sn = 1 +
1

2
+ · · ·+ 1

n
= Sum of areas of n rectangles

(In the picture, sn is the sum of the green and the blue regions)
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On the other hand, the sum of the areas is larger than the area under
f from 1 to n+ 1 which is

∫ n+1

1 f(x)dx. (see the picture above).

This is because f is decreasing, and therefore on each interval [k, k+1]
(with k = 1, . . . , n), the left-endpoint is larger than any other value
of f , and therefore the area of each rectangle is larger than the area
under f on [k, k + 1].

And therefore sn =
n∑

k=1

1

k
≥

∫ n+1

1

f(x)dx

But lim
n→∞

∫ n+1

1

f(x)dx =

∫ ∞

1

f(x)dx = ∞ (By assumption)

Therefore, by comparison, limn→∞ sn = ∞, that is
∑∞

n=1
1
n = ∞ □
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Corollary:

If p < 1, then
∞∑
n=1

1

np
diverges

Example 6:

∞∑
n=1

1√
n
=

∞∑
n=1

1

n
1
2

= ∞

Proof: Either use the integral test, or notice that if p < 1, then, since
n ≥ 1, we have np ≤ n (Think

√
n ≤ n)

Therefore
∞∑
n=1

1

np
≥

∞∑
n=1

1

n

But since
∑

1
n = ∞, we get

∑∞
n=1

1
np = ∞ by the comparison test.
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